Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structure of arylamine N-acetyltransferase reveals a catalytic triad

Abstract

Enzymes of the arylamine N-acetyltransferase (NAT) family are found in species ranging from Escherichia coli to humans. In humans they are known to be responsible for the acetylation of a number of arylamine and hydrazine drugs, and they are strongly linked to the carcinogenic potentiation of certain foreign substances. In prokaryotes their substrate specificities may vary and members of the gene family have been linked to pathways including amide synthesis during rifamycin production. Here we report the crystal structure at 2.8 Å resolution of a representative member of this family from Salmonella typhimurium in the presence and absence of a covalently bound product analog. The structure reveals surprising mechanistic information including the presence of a Cys-His-Asp catalytic triad. The fold can be described in terms of three domains of roughly equal length with the second and third domains linked by an interdomain helix. The first two domains, a helical bundle and a β-barrel, make up the catalytic triad using a structural motif identical to that of the cysteine protease superfamily.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Multiple sequence alignment of representative members of the NAT sequence family.
Figure 2: The NAT structure.
Figure 3: Structural homologs of NAT.
Figure 4: The active site of NAT with bound p-bromoacetanilide inhibitor.

References

  1. 1

    Riddle, B. & Jencks, W.P. J. Biol. Chem. 246, 3250–3258 (1971).

    CAS  PubMed  Google Scholar 

  2. 2

    Hughes, H.B. J. Pharmacol. Exp. Ther. 109, 444–452 (1953).

    CAS  PubMed  Google Scholar 

  3. 3

    Evans, D.A.P. & White, T.A. J. Lab. Clin. Med. 63, 394–403 (1964).

    CAS  PubMed  Google Scholar 

  4. 4

    Hein, D.W. et al. Toxicol. Lett. 64, 123–130 (1992).

    Article  Google Scholar 

  5. 5

    Vineis, P. et al. Nature 369, 154–156 (1994).

    CAS  Article  Google Scholar 

  6. 6

    Ambrosone, C.B. et al. Jama 276, 1494–1501 (1996).

    CAS  Article  Google Scholar 

  7. 7

    Risch, A., Wallace, D.M.A., Bathers, S. & Sim, E. Hum. Mol. Genet. 4, 231–236 (1995).

    CAS  Article  Google Scholar 

  8. 8

    Payton, M., Auty, R., Delgoda, R., Everett, M. & Sim, E. J. Bacteriol. 181, 1343–1347 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Ames, B.N., McCann, J. & Yamasaki, E. Mutat. Res. 31, 347–364 (1975).

    CAS  Article  Google Scholar 

  10. 10

    Weeks, C.M. & Miller, R. J. Appl. Crystallogr. 32, 120–124 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Neuwald, A.F. & Landsman, D. Trends Biochem. Sci. 22, 154–155 (1997).

    CAS  Article  Google Scholar 

  12. 12

    Wolf, E. et al. Cell 94, 439–449 (1998).

    CAS  Article  Google Scholar 

  13. 13

    Dutnall, R.N., Tafrov, S.T., Sternglanz, R. & Ramakrishnan, V. Cell 94, 427–438 (1998).

    CAS  Article  Google Scholar 

  14. 14

    Sinclair, J. & Sim, E. Biochem. Pharmacol. 53, 11–16 (1997).

    CAS  Article  Google Scholar 

  15. 15

    Andres, H.H., Klem, A.J., Schopfer, L.M., Harrison, J.K. & Weber, W.W. J. Biol. Chem. 263, 7521–7527 (1988).

    CAS  PubMed  Google Scholar 

  16. 16

    Goodford, P. J. Chemometrics 10, 107–117 (1996).

    CAS  Article  Google Scholar 

  17. 17

    Engel, C. & Wierenga, R. Curr. Opin. Struct. Biol. 6, 790–797 (1996).

    CAS  Article  Google Scholar 

  18. 18

    Kinoshita, K., Sadanami, K., Kidera, A. & Go, N. Protein Eng. 12, 11–14 (1999).

    CAS  Article  Google Scholar 

  19. 19

    Yu, T.W. et al. Proc Natl Acad Sci USA 96, 9051–9056 (1999).

    CAS  Article  Google Scholar 

  20. 20

    Watanabe, M., Sofuni, T. & Nohmi, T. J. Biol. Chem. 267, 8429–8436 (1992).

    CAS  PubMed  Google Scholar 

  21. 21

    Hubbard, T.J., Ailey, B., Brenner, S.E., Murzin, A.G. & Chothia, C. Nucleic Acids Res. 27, 254–256 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Sinclair, J.C. et al. Protein Expr. Purif. 12, 371–380 (1998).

    CAS  Article  Google Scholar 

  23. 23

    LeMaster, D.M. & Richards, F.M. Biochemistry 24, 7263–7268 (1985).

    CAS  Article  Google Scholar 

  24. 24

    Mushtaq, A. et al. Hum. Exp. Toxicol. in the press (2000).

  25. 25

    Leslie, A. Crystallographic computing (Oxford University Press, Oxford, UK; 1996).

    Google Scholar 

  26. 26

    Otwinowski, Z. Data collection and processing Vol. DL/SC1/R34 (eds, Sawyer, L., Isaacs, N. & Bailey, S.) (SERC Daresbury Laboratory, Daresbury, Warrington, UK; 1993).

    Google Scholar 

  27. 27

    Collaborative Computational project, Number 4. CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  28. 28

    Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard . Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  29. 29

    Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  30. 30

    Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    CAS  Article  Google Scholar 

  31. 31

    Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281–296 (1991).

    CAS  Article  Google Scholar 

  32. 32

    Kabsch, W. & Sander, C. Biopolymers 22, 2577–2637 (1983).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Upton and A. Mushtaq for help with expression of the SeMet derivative and E. Garman, members of the LMB cell cycle group, and the staff of the ESRF, ELETTRA and SRS synchrotrons for assistance with data collection. We would also like to acknowledge the Wellcome Trust and Royal Society for financial assistance and the MRC for a studentship (to J.C.S.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin E.M. Noble.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sinclair, J., Sandy, J., Delgoda, R. et al. Structure of arylamine N-acetyltransferase reveals a catalytic triad. Nat Struct Mol Biol 7, 560–564 (2000). https://doi.org/10.1038/76783

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing