Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of the Escherichia coli thioesterase II, a homolog of the human Nef binding enzyme

Abstract

Here we report the solution and refinement at 1.9 Å resolution of the crystal structure of the Escherichia coli medium chain length acyl-CoA thioesterase II. This enzyme is a close homolog of the human protein that interacts with the product of the HIV-1 Nef gene, sharing 45% amino acid sequence identity with it. The structure of the E. coli thioesterase II reveals a new tertiary fold, a ‘double hot dog’, showing an internal repeat with a basic unit that is structurally similar to the recently described β-hydroxydecanoyl thiol ester dehydrase. The catalytic site, inferred from the crystal structure and verified by site directed mutagenesis, involves novel chemistry and includes Asp 204, Gln 278 and Thr 228, which synergistically activate a nucleophilic water molecule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The molecular and crystal structure of TEII from E. coli.
Figure 2: The internal structural repeat in TEII and structural similarities with 4-hydroxybenzoyl-CoA thioesterase and β-hydroxydecanoyl thiol ester dehydrase.
Figure 3: The active site and catalytic mechanism of TEII.
Figure 4: Structure based sequence alignment of the TEII family members.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Katz, L. & Donadio, S. Annu. Rev. Microbiol. 47, 875–912 (1993).

    Article  CAS  Google Scholar 

  2. Smith, S. FASEB J. 8, 1248–1259 (1994).

    Article  CAS  Google Scholar 

  3. Meighen, E.A. FASEB J. 7, 1016–1022 (1993).

    Article  CAS  Google Scholar 

  4. Waku, K. Biochim. Biophys. Acta 1124, 101–111 (1992).

    Article  CAS  Google Scholar 

  5. Duncan, J.A. & Gilman, A.G. J. Biol. Chem. 273, 15830–15837 (1998).

    Article  CAS  Google Scholar 

  6. Bizzozero, O.A. Neuropediatrics 28, 23–26 (1997).

    Article  CAS  Google Scholar 

  7. Lawson, D.M. et al. Biochemistry 33, 9382–9388 (1994).

    Article  CAS  Google Scholar 

  8. Bellizzi, J.J. et al. Proc. Natl. Acad. Sci. USA 97, 4573–4578 (2000).

    Article  CAS  Google Scholar 

  9. Benning, M.M. et al. J. Biol. Chem. 273, 33572–33579 (1998).

    Article  CAS  Google Scholar 

  10. Leesong, M., Henderson, B.S., Gillig, J.R., Schwab, J.M. & Smith, J.L. Structure 4, 253–264 (1996).

    Article  CAS  Google Scholar 

  11. Cho, H., Cronan, J.E. Jr. J. Biol. Chem. 268, 9238–9245 (1993).

    CAS  Google Scholar 

  12. Naggert, J. et al. J. Biol. Chem. 266, 11044–11050 (1991).

    CAS  PubMed  Google Scholar 

  13. Bonner, W.M. & Bloch, K. J. Biol. Chem. 247, 3123–3133 (1972).

    CAS  PubMed  Google Scholar 

  14. Swenson, L., Green, R., Smith, S. & Derewenda, Z.S. J. Mol. Biol. 236, 660–662 (1994).

    Article  CAS  Google Scholar 

  15. Liu, L.X. et al. J. Biol. Chem. 272, 13779–13785 (1997).

    Article  CAS  Google Scholar 

  16. Watanabe, H. et al. Biochem. Biophys. Res. Commun. 238, 234–239 (1997).

    Article  CAS  Google Scholar 

  17. Hanna, Z. et al. Cell 95, 163–175 (1998).

    Article  CAS  Google Scholar 

  18. Laskowski, R.A., McArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 282–291 (1993).

    Article  Google Scholar 

  19. Holm, L. & Sander, C. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  20. Wallace, A.C., Laskowski, R.A. & Thornton, J.M. Protein Sci. 5, 1001–1013 (1996).

    Article  CAS  Google Scholar 

  21. Dodson, G. & Wlodawer, A. Trends Biochem. Sci. 23, 347–352 (1998).

    Article  CAS  Google Scholar 

  22. Derewenda, Z.S. & Wei, Y. J. Am. Chem. Soc. 117, 2104–2105 (1995).

    Article  CAS  Google Scholar 

  23. Jones, J.M., Nau, K., Geraghty, M.T., Erdmann, R. & Gould, S.J. J. Biol. Chem. 274, 9216–9223 (1999).

    Article  CAS  Google Scholar 

  24. Sheffield, P., Garrard, S. & Derewenda, Z. Protein Expr. Purif. 15, 34–39 (1999).

    Article  CAS  Google Scholar 

  25. Otwinowski, Z. & Minor, W. Methods Enzymol. A 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  26. Sheldrick, G.M. & Gould, R.O. Acta Crystallogr. B 51, 423–431. (1995).

    Article  Google Scholar 

  27. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  28. Kleywegt, G.J. & Jones, T.A. SERC Daresbury Laboratory Study Weekend Proceedings, 59–66 (1994)

    Google Scholar 

  29. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  30. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  31. Brunger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  32. Esnouf, R.M. J. Mol. Graph. Model 15, 132–143 (1997).

    Article  CAS  Google Scholar 

  33. Carson, M. J. Appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

  34. Nicholls, A. GRASP: graphical representation and analysis of surface properties. (Columbia University, New York; 1993)

    Google Scholar 

Download references

Acknowledgements

We thank the EMBL outstation, Hamburg, for providing access to the synchrotron beamlines, and for outstanding assistance. A. Murzin (LMB, Cambridge, UK) was the first to note and point out to us the internal repeat in the structure of TEII. S. Garrard is gratefully acknowledged for conducting limited proteolysis on TEII. This study was funded by the National Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zygmunt S. Derewenda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Derewenda, U., Dauter, Z. et al. Crystal structure of the Escherichia coli thioesterase II, a homolog of the human Nef binding enzyme. Nat Struct Mol Biol 7, 555–559 (2000). https://doi.org/10.1038/76776

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76776

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing