Nitric oxide binding to nitrophorin 4 induces complete distal pocket burial

Abstract

The nitrophorins comprise an unusual family of proteins that use ferric (Fe(III)) heme to transport highly reactive nitric oxide (NO) from the salivary gland of a blood sucking bug to the victim, resulting in vasodilation and reduced blood coagulation. We have determined structures of nitrophorin 4 in complexes with H2O, cyanide and nitric oxide. These structures reveal a remarkable feature: the nitrophorins have a broadly open distal pocket in the absence of NO, but upon NO binding, three or more water molecules are expelled and two loops fold into the distal pocket, resulting in the packing of hydrophobic groups around the NO molecule and increased distortion of the heme. In this way, the protein apparently forms a ‘hydrophobic trap’ for the NO molecule. The structures are very accurate, ranging between 1.6 and 1.4 Å resolutions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Ribbon drawing of the NP4–NO structure.
Figure 2: Electron density maps for NO and heme.
Figure 3: Loop ordering on NO binding.
Figure 4: Hydrogen bonding in the mobile loops.

Accession codes

Accessions

Protein Data Bank

References

  1. 1

    Bredt, D.S. & Snyder, S.H. Annu. Rev. Biochem. 63, 175–195 (1994).

    CAS  Article  Google Scholar 

  2. 2

    Law, J., Ribeiro, J.M.C. & Wells, M. Annu. Rev. Biochem. 61, 87–111 (1992).

    CAS  Article  Google Scholar 

  3. 3

    Montfort, W.R., Weichsel, A. & Andersen, J.F. Biochim. Biophys. Acta, in the press (2000).

  4. 4

    Kirchhoff, L.V. N. Engl. J. Med. 329, 639–644 (1993).

    CAS  Article  Google Scholar 

  5. 5

    Sharma, V.S. & Magde, D. Methods 19, 494–505 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Ribeiro, J.M.C., Hazzard, J.M.H., Nussenzveig, R.H., Champagne, D.E. & Walker, F.A. Science 260, 539–541 (1993).

    CAS  Article  Google Scholar 

  7. 7

    Andersen, J.F. et al. Biochemistry 36, 4423–4428 (1997).

    CAS  Article  Google Scholar 

  8. 8

    Traylor, T.G. & Sharma, V.S. Biochemistry 31, 2847–2849 (1992).

    CAS  Article  Google Scholar 

  9. 9

    Sharma, V.S., Isaacson, R.A., John, M.E., Waterman, M.R. & Chevion, M. Biochemsitry 22, 3897–3902 (1983).

    CAS  Article  Google Scholar 

  10. 10

    Addison, A.W. & Stephanos, J.J. Biochemistry 25, 4104–4113 (1986).

    CAS  Article  Google Scholar 

  11. 11

    Hoshino, M., Maeda, M., Konishi, R., Seki, H. & Ford, P.C. J. Am. Chem. Soc. 118, 5702–5707 (1996).

    CAS  Article  Google Scholar 

  12. 12

    Andersen, J.F., Weichsel, A., Balfour, C.A., Champagne, D.E. & Montfort, W.R. Structure 6, 1315–1327 (1998).

    CAS  Article  Google Scholar 

  13. 13

    Weichsel, A., Andersen, J.F., Champagne, D.E., Walker, F.A. & Montfort, W.R. Nature Struct. Biol. 5, 304–309 (1998).

    CAS  PubMed  Google Scholar 

  14. 14

    Kaneko, Y., Yuda, M., Iio, T., Murase, T. & Chinzei, Y. Biochim. Biophys. Acta 1431, 492–499 (1999).

    CAS  Article  Google Scholar 

  15. 15

    Sharma, V.S., Traylor, T.G., Gardiner, R. & Mizukami, H. Biochemistry 26, 3837–3843 (1987).

    CAS  Article  Google Scholar 

  16. 16

    Ding, X.D. et al. J. Am. Chem. Soc. 121, 128–138 (1999).

    CAS  Article  Google Scholar 

  17. 17

    Scheidt, W.R. & Ellison, M.K. Acc. Chem. Res. 32, 350–359 (1999).

    CAS  Article  Google Scholar 

  18. 18

    Hodge, S.J. et al. Chem. Commun. 19, 2283–2284 (1996).

    Article  Google Scholar 

  19. 19

    Edwards, S.L., Kraut, J. & Poulos, T.L. Biochemistry 27, 8074–8081 (1988).

    CAS  Article  Google Scholar 

  20. 20

    Jewsbury, P., Yamamoto, S., Minato, T., Saito, M. & Kitagawa, T. J. Am. Chem. Soc. 116, 11586–11587 (1994).

    CAS  Article  Google Scholar 

  21. 21

    Carducci, M.D., Pressprich, M.R. & Coppens, P. J. Am. Chem. Soc. 119, 2669–2678 (1997).

    CAS  Article  Google Scholar 

  22. 22

    Shaw, A.W. & Vosper, A.J. J. Chem. Soc. Faraday Trans. 8, 1239–1244 (1977).

    Article  Google Scholar 

  23. 23

    Kerwin, J.F., Jr., Lancaster, J.R., Jr. & Feldman, P.L. J. Med. Chem. 38, 4343–4362 (1995).

    CAS  Article  Google Scholar 

  24. 24

    Walker, F.A., Emrick, D., Rivera, J.E., Hanquet, B.J. & Buttlaire, D.H. J. Am. Chem. Soc. 110, 6234–6240 (1988).

    CAS  Article  Google Scholar 

  25. 25

    Shelnutt, J.A. et al. Chem. Soc. Rev. 27, 31–41 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Rohlfs, R.J. et al. J. Biol. Chem. 265, 3168–3176 (1990).

    CAS  PubMed  Google Scholar 

  27. 27

    Messerschmidt, A. & Pflugrath, J.W. J. Appl. Crystallogr. 20, 306–315 (1987).

    CAS  Article  Google Scholar 

  28. 28

    Kabsch, W. J. Appl. Crystallogr. 21, 916–934 (1988).

    CAS  Article  Google Scholar 

  29. 29

    CCP4. Acta Crystallogr. D 50, 760–763 (1994).

  30. 30

    Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjelgard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  31. 31

    Brunger, A.T. X-PLOR: a system for X-ray crystallography and NMR (Yale University Press, New Haven, Connecticut; 1992).

    Google Scholar 

  32. 32

    Sheldrick, G.M. & Schneider, T.R. Methods Enzymol. 277, 319–343 (1997).

    CAS  Article  Google Scholar 

  33. 33

    Andersen, J.F. et al. Biochemistry in the press (2000).

Download references

Acknowledgements

We thank C. Balfour for protein purification. Supported in part by grants from NIH, ACS, and ADCRC to W.R.M., and from the NIH to J.F.A.

Author information

Affiliations

Authors

Corresponding author

Correspondence to William R. Montfort.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weichsel, A., Andersen, J., Roberts, S. et al. Nitric oxide binding to nitrophorin 4 induces complete distal pocket burial. Nat Struct Mol Biol 7, 551–554 (2000). https://doi.org/10.1038/76769

Download citation

Further reading