Pressure-induced local unfolding of the Ras binding domain of RalGDS

Abstract

The reliable prediction of the precise three-dimensional structure of proteins from their amino acid sequence is a major, still unresolved problem in biochemistry. Pressure is a parameter that controls folding/unfolding transitions of proteins through the volume change ΔV of the protein-solvent system. By varying the pressure from 30 to 2,000 bar we detected using 15N/1H 2D NMR spectroscopy a unique equilibrium unfolding intermediate I in the Ras binding domain of the Ral guanine nucleotide dissociation stimulator (Ral GDS). It is characterized by a local melting of specific structural elements near hydrophobic cavities while the overall folded structure is maintained.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Pressure effects observable in 15N,1H-HSQC spectra14 of RalGDS-RBD (residues 11–97).
Figure 2: Pressure induced local unfolding of RalGDS-RBD.
Figure 3: Conformational equilibrium of RalGDS-RBD.

References

  1. 1

    Morishima, I. In Current perspectives in high pressure biology. (ed. Jannasch, H.W.) 315–332 (Academic Press, San Diego, Calfornia; 1987).

    Google Scholar 

  2. 2

    Samarasinghe, S.D., Campbell, D.M., Jonas, A. & Jonas, J. Biochemistry 31, 7773–7778 (1992).

    CAS  Article  Google Scholar 

  3. 3

    Vidugiris, G.J.A., Truckses, D.M., Markley J.L. & Royer, C.A. Biochemistry 35, 3857–3864 (1996).

    CAS  Article  Google Scholar 

  4. 4

    Jonas, J., Ballard, L. & Nash, D. Biophys. J. 75, 445– 452 (1998).

    CAS  Article  Google Scholar 

  5. 5

    Yamada, H. NMR Basic Principles Progress 24, 232– 263 (1990).

    Google Scholar 

  6. 6

    Akasaka, K. Tezuka, T. & Yamada, H. J. Mol. Biol. 271, 671– 678 (1997).

    CAS  Article  Google Scholar 

  7. 7

    Li, H., Yamada, H. & Akasaka, K. Biochemistry 5, 1167– 1173 (1998).

    Article  Google Scholar 

  8. 8

    Inoue, K., Yamada, H., Imoto, T. & Akasaka, K. J. Biomol. NMR 12, 535–541 ( 1998).

    CAS  Article  Google Scholar 

  9. 9

    Akasaka, K. et al. Protein Sci. 8, 1946– 1953 (1999).

    CAS  Article  Google Scholar 

  10. 10

    Li, H., Yamada, H. & Akasaka, K. Biophys. J. 77, 2801– 2812 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Herrmann, C., Horn, G., Spaargaren, M. & Wittinghofer, A. J. Biol. Chem. 271, 6794–6800 ( 1996).

    CAS  Article  Google Scholar 

  12. 12

    Geyer, M., Herrmann, C., Wohlgemuth, S., Wittinghofer, A. & Kalbitzer, H.R. Nature Struct. Biol. 4, 694–699 (1997).

    CAS  Article  Google Scholar 

  13. 13

    Huang, L., Weng, X., Hofer, F., Martin, G.S. & Kim, S.-H. Nature Struct. Biol. 4, 609– 615 (1997).

    CAS  Article  Google Scholar 

  14. 14

    Schleucher, J. et al. J. Biomol. NMR 4, 301– 306 (1994).

    CAS  Article  Google Scholar 

  15. 15

    Wishart, D.S., Bigam, C.G., Holm, A., Hodges, R.S. & Sykes, B.D. J. Biomol. NMR 5, 67– 81 (1995).

    CAS  Article  Google Scholar 

  16. 16

    Zhang, O., Kay, L.E., Olivier, J.P. & Forman Kay, J.D. J. Biomol. NMR 4, 845–858 ( 1994).

    CAS  Article  Google Scholar 

  17. 17

    IAPWS Release on the Skeleton Tables 1985 for the Thermodynamic Properties of Ordinary Water Substance (The International Association for the Prperties of Water and Steam, Palo Alto; 1985)

  18. 18

    Fuentes, E.J. and Wand, A.J. Biochemistry 37, 9877–9883 (1998).

    CAS  Article  Google Scholar 

  19. 19

    Makhatadze, G.I. & Privalov, P.L. Biophys. Chem. 51, 291–425 ( 1995).

    Article  Google Scholar 

  20. 20

    Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281– 296 (1991).

    CAS  Article  Google Scholar 

  21. 21

    Kauzmann, W. Adv. Protein Chem. 14, 1–63 (1959).

    CAS  Article  Google Scholar 

  22. 22

    Weber, G. & Drickamer, H.G. Q. Rev. Biophys. 16, 89–112 (1983).

    CAS  Article  Google Scholar 

  23. 23

    Frye, K.J. & Royer, C.A. Protein Sci. 7, 2217–2222 (1998).

    CAS  Article  Google Scholar 

  24. 24

    Hummer, G., Garde, S., Garcia, A.E., Paulaitis, M.E. & Pratt, L.R. Proc. Natl. Acad. Sci. USA 95, 1552–1555 (1998).

    CAS  Article  Google Scholar 

  25. 25

    States, D.J., Haberkorn, R.A. & Ruben, D.J. J. Magn. Reson. 48, 286– 292 (1982).

    CAS  Google Scholar 

  26. 26

    Piotto, M., Saudek, V. & Sklenar, V. J. Biomol. NMR 2, 661– 666 (1992).

    CAS  Article  Google Scholar 

  27. 27

    Sklenar, V. Piotto, M., Leppik, R. & Saudek, V. J. Magn. Reson. A 102, 241–245 ( 1993).

    CAS  Article  Google Scholar 

  28. 28

    Wishart, D.S. et al. J. Biomol. NMR 6, 135– 140 (1995).

    CAS  Article  Google Scholar 

  29. 29

    Farrow, N.A. et al. Biochemistry 33, 5948 ( 1994).

    Article  Google Scholar 

  30. 30

    Delaglio, F. et al. J. Biomol. NMR 6, 277– 293 (1995).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft, the European Union, the Humboldt foundation and the Ministry of Education, Science, Sports and Culture of Japan. We thank R. Jaenicke and A. Wittinghofer for helpful discussions, and M. Geyer for aid with the sample preparation.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Kazuyuki Akasaka or Hans Robert Kalbitzer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Inoue, K., Yamada, H., Akasaka, K. et al. Pressure-induced local unfolding of the Ras binding domain of RalGDS . Nat Struct Mol Biol 7, 547–550 (2000). https://doi.org/10.1038/76764

Download citation

Further reading