Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transition-state analogs as inhibitors of human and malarial hypoxanthine-guanine phosphoribosyltransferases

Abstract

The proposed transition state for hypoxanthine-guanine phosphoribosyltransferases (HGPRTs) has been used to design and synthesize powerful inhibitors that contain features of the transition state. The iminoribitols (1S)-1-(9-deazahypoxanthin-9-yl)-1,4-dideoxy-1, 4-imino-D-ribitol 5-phosphate (immucillinHP) and (1S)-1-(9-deazaguanin-9-yl)-1,4-dideoxy-1, 4-imino-D-ribitol 5-phosphate (immucillinGP) are the most powerful inhibitors yet reported for both human and malarial HGPRTs. Equilibrium binding constants are >1,000-fold tighter than the binding of the nucleotide substrate. The NMR spectrum of malaria HGXPRT in the Michaelis complex reveals downfield hydrogen-bonded protons. The chemical shifts move farther downfield with bound inhibitor. The inhibitors are lead compounds for species-specific antibiotics against parasitic protozoa. The high-resolution crystal structure of human HGPRT with immucillinGP is reported in the companion paper.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Substrate (IMP), proposed transition state and inhibitors for HGPRT.
Figure 2: a, Estimate of the transition-state binding energy for IMP and PPi at the transition state of human HGPRT.
Figure 3: Inhibition of human HGPRT by immucillin nucleotides.
Figure 4: Release of immucillins from the HGPRT complexes.
Figure 5: Proton NMR spectra of the downfield protons in malarial HGXPRT, the Michaelis complex and the complex with immucillin nucleotides.
Figure 6: Comparison of a, human HGPRT–immucillinGP–MgPPi and b, Trypanosoma cruzi HPRT–formycin-B base–MgPRPP in the crystal structures.

Similar content being viewed by others

References

  1. Berens, R.L., Krug, E.C. & Marr, J.J. in Biochemistry of parasitic organisms and its molecular foundations (eds Marr, J.J. & Muller, M.) 89– 117 (Academic Press, London; 1995).

    Book  Google Scholar 

  2. Berman, P.A., Human, L. & Freese, J.A. Xanthine oxidase inhibits growth of Plasmodium falciparum in human erythrocytes in vitro. J. Clin. Invest. 88, 1848–1855 (1991).

    Article  CAS  Google Scholar 

  3. Nchinda, T.C. Malaria: a reemerging disease in Africa. Emerg. Infect. Dis. 4, 398–403 (1998).

    Article  CAS  Google Scholar 

  4. Jadhav, A.L., Townsend, L.B. & Nelson, J.A. Inhibition of hypoxanthine-guanine phosphoribosyltransferase. Biochem. Pharmacol. 28, 1057– 1062 (1979).

    Article  CAS  Google Scholar 

  5. Bennett, L.L. et al. Inhibition of utilization of hypoxanthine and guanine in cells treated with the carbocyclic analog of adenosine. Phosphates of carbocyclic nucleoside analogs as inhibitors of hypoxanthine (guanine) phosphoribosyltransferase. Mol. Pharmacol. 27, 666– 675 (1985).

    CAS  PubMed  Google Scholar 

  6. Eakin, A.E., Guerra, A., Focia, P.J., Torres-Martinez, J. & Craig, S.P. Hypoxanthine phosphoribosyltransferase from Trypanosoma cruzi as a target for structure-based inhibitor design: crystallization and inhibition studies with purine analogs. Antimicrob. Agents Chemother. 41, 1686–1692 (1997).

    Article  CAS  Google Scholar 

  7. Somoza, J.R. et al. Rational design of novel antimicrobials blocking purine salvage in a parasitic protozoan. Biochemistry 37, 5344–5348 (1998).

    Article  CAS  Google Scholar 

  8. Queen, S.A., VanderJagt, D.L. & Reyes, P. In vitro susceptibilities of Plasmodium falciparum to compounds which inhibit nucleotide metabolism. Antimicrob. Agents Chemother. 34, 1393–1398 (1990).

    Article  CAS  Google Scholar 

  9. Tao, W., Grubmeyer, C. & Blanchard, J.S. Transition state structure of Salmonella typhimurium orotate phosphoribosyltransferase. Biochemistry 35, 14–21 (1996).

    Article  CAS  Google Scholar 

  10. Schramm, V.L. Enzymatic N-riboside scission in RNA and RNA precursors. Curr. Opin. Chem. Biol. 1, 323–331 (1997).

    Article  CAS  Google Scholar 

  11. Miles, R.W., Tyler, P.C., Furneaux, R.H., Bagdassarian, C.K. & Schramm, V.L. One-third-the-sites transition state inhibitors for purine nucleoside phosphorylase. Biochemistry 37, 8615–8621 (1998).

    Article  CAS  Google Scholar 

  12. Focia, P.J., Craig, S.P. & Eakin, A.E. Approaching the transition state in the crystal structure of a phosphoribosyltransferase. Biochemistry 37, 17120–17127 (1998).

    Article  CAS  Google Scholar 

  13. Shi, W. et al. The 2.0 Å structure of human hypoxanthine-guanine phosphoribosyltransferase in complex with a transition-state analog inhibitor. Nature Struct. Biol. 6, ´–´ (1999).

  14. Xu, Y. & Grubmeyer, C. Catalysis in human hypoxanthine-guanine phosphoribosyltransferase: Asp-137 acts as a general acid/base. Biochemistry 37, 4114–4124 (1998).

    Article  CAS  Google Scholar 

  15. Xu, Y., Eads, J.C., Sacchettini, J.C. & Grubmeyer, C. Kinetic mechanism of human hypoxanthine-guanine phosphoribosyltransferase: rapid phosphoribosyl transfer chemistry. Biochemistry 36, 3700–3712 (1997).

    Article  CAS  Google Scholar 

  16. Morrison, J.F. & Walsh, C.T. The behavior and significance of slow-binding enzyme inhibitors. Adv. Enzymol. 61, 201–301 (1988).

    CAS  PubMed  Google Scholar 

  17. Cleland, W.W. & Kreevoy, M.M. Low-barrier hydrogen bonds and enzymic catalysis. Science 264, 1887– 1890 (1994).

    Article  CAS  Google Scholar 

  18. Shan, S-O. & Herschlag, D. The change in hydrogen bond strength accompanying charge rearrangement: implications for enzymatic catalysis. Proc. Natl. Acad. Sci. USA 93, 14474–14479 (1996).

    Article  CAS  Google Scholar 

  19. Gerlt, J.A. & Gassman, P.G. An explanation for rapid enzyme-catalyzed proton abstraction from carbon acids: importance of late transition states in concerted mechanisms. J. Am. Chem. Soc. 115, 11552–11568 (1993).

    Article  CAS  Google Scholar 

  20. Halkides, C.J., Wu, Y.Q. & Murry, C.J. A low-barrier hydrogen bond in subtilisin: 2H and 15N NMR studies with peptidyl trifluoromethyl ketones. Biochemistry 35, 15941– 15948 (1996).

    Article  CAS  Google Scholar 

  21. Kahyaoglu, K.A. et al. Low barrier hydrogen bond is absent in the ground state but is present in a transition-state complex in the prolyl oligopeptidase family of serine proteases. J. Biol. Chem. 272, 25547–25554 (1997).

    Article  CAS  Google Scholar 

  22. Zhao, Q., Abeygunawardana, C., Gittis, A.G. & Mildvan, A.S. Hydrogen bonding at the active site of delta 5,3-ketosteroid isomerase. Biochemistry 36, 14616–14626 (1997).

    Article  CAS  Google Scholar 

  23. Eigen, M. Proton transfer, acid-base catalysis, and enzymatic hydrolysis. Part I: Elementary processes. Angew. Chem. Int. Edn. Engl. 33, 1–72 (1964).

    Google Scholar 

  24. Horenstein, B.A., Zabinski, R.F. & Schramm, V.L. A new class of C-nucleoside analogs. 1-(S)-aryl-1,4-dideoxy-1,4-imino-D-ribitols, transition state analog inhibitors of nucleoside hydrolase. Tetrahedr. Lett. 34, 7213–7216 (1993).

    Article  CAS  Google Scholar 

  25. Furneaux, R.H., Limberg, G., Tyler, P.C. & Schramm, V.L. Synthesis of transition state inhibitors for N-riboside hydrolases and transferases. Tetrahedron 53, 2915–2930 (1997).

    Article  CAS  Google Scholar 

  26. Lim, M-I., Ren, W-Y, Otter, B.A. & Kline, R.S. Synthesis of 9-deazaguanosine and other new pyrrolo[3,2-d]pyrimidine C-nucleosides. J. Org. Chem. 48, 780– 788 (1983).

    Article  CAS  Google Scholar 

  27. Bennett, L.W., Comber, R.N. & Secrist, J.A. Differences in the metabolism and metabolic effects of the carbocyclic adenosine analogs, neplanocin A and aristeromycin. Mol. Pharmacol. 29, 383–390 (1986).

    PubMed  Google Scholar 

  28. Merkler, D.J. & Schramm, V.L. A preparative method for the enzymatic 5'-monophosphorylation of nucleosides. Anal. Biochem. 167, 148–153 (1987).

    Article  CAS  Google Scholar 

  29. Brennard, J., Konecki, D.S. & Caskey, C.T. Expression of human and Chinese hamster hypoxanthine-guanine phosphoribosyltransferase cDNA recombinants in cultured Lesch–Nyhan and Chinese hamster fibroblasts. J. Biol. Chem. 258, 9593–9598 (1983).

    Google Scholar 

  30. Eads, J.C., Scapin, G., Xu, Y., Grubmeyer, C. & Sacchettini, J.C. The crystal structure of human hypoxanthine-guanine phosphoribosyltransferase with bound GMP. Cell 78, 325–334 (1994).

    Article  CAS  Google Scholar 

  31. Schramm, V.L. Comparison of initial velocity and binding data for allosteric adenosine monophosphate nucleosidase. J. Biol. Chem. 251, 3417– 3424 (1976).

    CAS  PubMed  Google Scholar 

  32. Plateau, P. & Guéron, M. Exchangeable proton NMR without base-line distortion, using new strong-pulse sequences. J. Am. Chem. Soc. 104, 7310–7311 (1982).

    Article  CAS  Google Scholar 

  33. Bax, A., Griffey, R.H. & Hawkins, B.L. Correlation of proton and nitrogen-15 chemical shifts by multiple quantum NMR. J. Magn. Reson. 55, 301–315 (1983).

    CAS  Google Scholar 

  34. Horenstein, B.A. & Schramm, V.L. Correlation of the molecular electrostatic potential surface of an enzymatic transition state with novel transition state inhibitors. Biochemistry 32, 9917–9925 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research grants and training grants from the National Institutes of Health, and the New Zealand Foundation for Research, Science and Technology supported this research. The NMR facility was supported in part by grants from the NSF and the Howard Hughes Medical Institute Biomedical Research Support Program for Medical Schools. We thank A. Sauve for the enzymatic phosphorylation of [7-15N]immucillinHP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vern L. Schramm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Tyler, P., Furneaux, R. et al. Transition-state analogs as inhibitors of human and malarial hypoxanthine-guanine phosphoribosyltransferases. Nat Struct Mol Biol 6, 582–587 (1999). https://doi.org/10.1038/9367

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9367

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing