Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chain collapse can occur concomitantly with the rate-limiting step in protein folding

Abstract

We have directly characterized the extent of chain collapse early in the folding of protein L using time-resolved small angle X-ray scattering. We find that, immediately after the initiation of refolding, the protein exhibits dimensions indistinguishable from those observed under highly denaturing, equilibrium conditions and that this expanded initial state collapses with the same rate as that of the overall folding reaction. The observation that chain compaction need not significantly precede the rate-limiting step of folding demonstrates that rapid chain collapse is not an obligatory feature of protein folding reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The equilibrium unfolding of protein L is accurately described as a two-state process in which only the denatured and native states are populated.
Figure 2: Time-resolved SAXS indicates that the refolding of protein L lacks a burst-phase collapse event under the conditions employed.
Figure 3: A decrease in forward scattering (I0) is observed during folding.
Figure 4: A model of the folding barrier of protein L can be constrained using a number of recent experimental results.

Similar content being viewed by others

References

  1. Jackson, S.E. & Fersht, A.R. Biochemistry 30, 10428–10435 (1991).

    Article  CAS  Google Scholar 

  2. Dill, K.A. et al. Protein Sci., 4, 561– 602 (1995).

    Article  CAS  Google Scholar 

  3. Gutin, A.M., Abkevich, V.I. & Shakhnovich, E.I. Biochemistry 34, 3066– 3076 (1995).

    Article  CAS  Google Scholar 

  4. Baldwin, R.L. Folding & Design 1, R1–8 (1996).

    Article  CAS  Google Scholar 

  5. Sosnick, T.R., Mayne, L. & Englander, S.W. Proteins 24, 413– 426 (1996).

    Article  CAS  Google Scholar 

  6. Sosnick, T.R., Shtilerman, M.D., Mayne, L. & Englander, S.W. Proc. Natl. Acad. Sci. USA 94, 8545– 8550 (1997).

    Article  CAS  Google Scholar 

  7. Roder, H. & Col˘on, W. Curr. Opin. Struct. Biol. 7, 15–28 (1997).

    Article  CAS  Google Scholar 

  8. Guijarro, J.I., Morton, C.J., Plaxco, K.W., Campbell, I.D. & Dobson, C.M. J. Mol. Biol. 275, 657–667 (1998).

    Article  Google Scholar 

  9. Thirumalai, D. J. De Physique I 5, 1457–1467 (1995).

    Article  CAS  Google Scholar 

  10. Nymeyer, H., Garcia, A.E. & Onuchic, J.N. Proc. Natl. Acad. Sci. USA 95, 5921–5928 (1998).

    Article  CAS  Google Scholar 

  11. Eliezer, D. et al. Biophys. J. 65, 912– 917 (1993).

    Article  CAS  Google Scholar 

  12. Kataoka, M. & Goto, Y. Folding & Design 1, R107–114 (1996).

    Article  CAS  Google Scholar 

  13. Chen, L., Wildegger, G., Kiefhaber, T., Hodgson, K.O. & Doniach, S.A. J. Mol. Biol. 276, 225–237 (1998).

    Article  CAS  Google Scholar 

  14. Scalley, M.L. et al. Biochemistry 36, 3373– 3382 (1997).

    Article  CAS  Google Scholar 

  15. Smith, C.K. et al. Protein Sci. 5, 2009– 2019 (1996).

    Article  CAS  Google Scholar 

  16. Segel, D.J., Fink, A.L., Hodgson, K.O. & Doniach, S. Biochemistry 37, 12443–12451 (1998).

    Article  CAS  Google Scholar 

  17. Scalley, M.L. & Baker, D. Proc. Natl. Acad. Sci. USA 94, 10636–10640 (1997).

    Article  CAS  Google Scholar 

  18. Nozaki, Y. & Tanford, C. J. Biol. Chem. 245, 1648–1652 (1970).

    CAS  PubMed  Google Scholar 

  19. Alonso, D.O. & Dill, K.A. Biochemistry 30, 5974–5985 (1991).

    Article  CAS  Google Scholar 

  20. Dill, K.A. & Shortle, D. Annu. Rev. Biochem. 60, 795–825 (1991).

    Article  CAS  Google Scholar 

  21. Plaxco, K.W. & Dobson, C.M. Curr. Opin. Struct. Biol. 6, 630–636 (1996).

    Article  CAS  Google Scholar 

  22. Glatter, O. & Kratky, O. Small angle X-ray scattering. (Academic Press, London; 1982).

  23. Tsuruta, H. et al. Rev. Sci. Inst. 60, 2356– 2358 (1989).

    Article  CAS  Google Scholar 

  24. Plaxco, K.W. & Baker, D. Proc. Natl. Acad. Sci. USA 95, 13591–13596 (1998).

    Article  CAS  Google Scholar 

  25. Gu, H.D., Kim, D. & Baker, D. J. Mol. Biol. 274, 588–596 (1997).

    Article  CAS  Google Scholar 

  26. Plaxco, K.W., Simons, K.T. & Baker, D. J. Mol. Biol. 277, 985– 994 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Tsuruta for aid with and development of the stopped-flow apparatus used in this study and H. S. Chan, K. Fiebig, W. Parson, D. Shortle, D. Teller and P. Wolynes for critical readings of the manuscript. Data were collected at Beam Line 4-2 of the Stanford Synchrotron Radiation Laboratory (SSRL). The US Department of Energy and the National Institutes of Health support SSRL. A NIH FIRST award and Packard Foundation and NSF young investigator awards to D.B. supported portions of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plaxco, K., Millett, I., Segel, D. et al. Chain collapse can occur concomitantly with the rate-limiting step in protein folding. Nat Struct Mol Biol 6, 554–556 (1999). https://doi.org/10.1038/9329

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9329

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing