Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure and improved antisense properties of 2'-O-(2-methoxyethyl)-RNA

Abstract

2'-O-(2-Methoxyethyl)-RNA (MOE-RNA) is a nucleic acid analog with promising features for antisense applications. Compared with phosphorothioate DNA (PS-DNA), the MOE modification offers improved nuclease resistance, enhanced RNA affinity, improved cellular uptake and intestinal absorption, reduced toxicity and immune stimulation. The crystal structure of a fully modified MOE-RNA dodecamer duplex (CGCGAAUUCGCG) was determined at 1.7 Å resolution. In the majority of the MOE substituents, the torsion angle around the ethylene alkyl chain assumes a gauche conformation. The conformational preorganization of the MOE groups is consistent with the improved RNA affinity and the extensive hydration of the substituents could play a role in the improved cellular uptake of MOE-RNA. A specific hydration pattern that bridges substituent and phosphate oxygen atoms in the minor groove of MOE-RNA may explain its high nuclease resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and stability of MOE-RNA and quality of the electron density.
Figure 2: Geometry and topology of the MOE-RNA duplex.
Figure 3: Conformational properties of the MOE substituents.
Figure 4: MOE-mediated hydration of residues with gauche and trans conformations around the ethyl bond of the 2'-O-substituent.

Similar content being viewed by others

References

  1. De Mesmaeker, A., Häner, R., Martin, P. & Moser, H. E. Acc. Chem. Res. 28, 366–374 (1995).

    Article  CAS  Google Scholar 

  2. Crooke, S.T. In Handbook of experimental pharmacology, vol. 131, Antisense Research and Applications (ed. Crooke, S.T.) 1–50 (Springer-Verlag, Berlin and Heidelberg, 1998).

    Google Scholar 

  3. Cook, P. D. Annu. Med. Rep. Chem. 33, 313–325 (1998).

    CAS  Google Scholar 

  4. Altmann, K.-H. et al. Biochem. Soc. Trans. 24, 630–637 (1996).

    Article  CAS  Google Scholar 

  5. Altmann, K.-H. et al. Chimia 50, 168–176 (1996).

    CAS  Google Scholar 

  6. Martin, P. Helv. Chim. Acta 78, 486–504 (1995).

    Article  CAS  Google Scholar 

  7. Freier, S. M. & Altmann, K.-H. Nucleic Acids Res. 25, 4429–4443 (1997).

    Article  CAS  Google Scholar 

  8. Akhtar, S. & Agrawal, S. Trends Pharmacol. Sci. 18, 12–18 (1997).

    Article  CAS  Google Scholar 

  9. Greig, M. J., Gaus, H., Cummins, L. L., Sasmor, H. & Griffey, R.H. J. Am. Chem. Soc. 117, 10765–10766 (1995).

    Article  CAS  Google Scholar 

  10. Baker, B. F. et al. J. Biol. Chem. 272, 11994–12000 (1997).

    Article  CAS  Google Scholar 

  11. Agrawal, S. Trends Biotechnol. 14, 376–387 (1996).

    Article  CAS  Google Scholar 

  12. Gao, W. Y., Storm, C., Egan, W. & Cheng, Y. C. Mol. Pharmacol. 43, 45–50 (1993).

    CAS  PubMed  Google Scholar 

  13. Wallace, T. L., Bazemore, S. A., Kornbrust, D. J. & Cossum, P. A. J. Pharmacol. Exp. Ther. 278, 1306–1312 (1996).

    CAS  PubMed  Google Scholar 

  14. Agrawal, S. et al. Antisense Nucleic Acid Drug Dev. 7, 575–584 (1997).

    Article  CAS  Google Scholar 

  15. Henry, S. P. et al. Anti-Cancer Drug Design 12, 1–14 (1997).

    CAS  PubMed  Google Scholar 

  16. Henry, S. P., Monteith, D., Bennett, F. & Levin, A. A. Anti-Cancer Drug Design 12, 409–420 (1997).

    CAS  PubMed  Google Scholar 

  17. Levin, A. A. et al. In Handbook of experimental pharmacology, vol. 131, Antisense research and applications (ed. Crooke, S.T.) 169–215 (Springer Verlag, Berlin and Heidelberg; 1998).

    Google Scholar 

  18. Saenger, W. Principles of nucleic acid structure (Springer Verlag, New York; 1984).

    Book  Google Scholar 

  19. Quigley, G. J., Teeter, M. M. & Rich, A. Proc. Natl. Acad. Sci. U.S.A. 75, 64–68 (1978).

    Article  CAS  Google Scholar 

  20. Cate, J. H. & Doudna, J. A. Structure 4, 1221–1229 (1996).

    Article  CAS  Google Scholar 

  21. Scott, W. G., Finch, J. T. & Klug, A. Cell 81, 991–1002 (1995).

    Article  CAS  Google Scholar 

  22. Portmann, S., Usman, N. & Egli, M. Biochemistry 34, 7569–7575 (1995).

    Article  CAS  Google Scholar 

  23. Correll, C. C., Freeborn, B., Moore, P. B. & Steitz, T. A. Cell 91, 705–712 (1997).

    Article  CAS  Google Scholar 

  24. Deslongchamps, P. Stereoelectronic effects in organic chemistry (Tetrahedron Organic Chemistry Series, Pergamon, Oxford; 1983).

    Google Scholar 

  25. Cummins, L. L. et al. Nucleic Acids Res. 23, 2019–2024 (1995).

    Article  CAS  Google Scholar 

  26. Tereshko, V. et al. Biochemistry 37, 10626–10634 (1998).

    Article  CAS  Google Scholar 

  27. Lind, K. E., Mohan, V., Manoharan, M. & Ferguson, D. M. Nucleic Acids Res. 26, 3694–3699 (1998).

    Article  CAS  Google Scholar 

  28. Egli, M., Portmann, S. & Usman, N. Biochemistry 35, 8489–8494 (1996).

    Article  CAS  Google Scholar 

  29. Schneider, B., Patel, K. & Berman, H. M. Biophys. J. 75, 2422–2434 (1998).

    Article  CAS  Google Scholar 

  30. Khatsenko, O., Morgan, R. & Geary, R. Pharm. Res. 16 in the press (1999).

  31. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  32. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  33. Brünger, A. T. X-PLOR 3.1, A system for X-ray crystallography and NMR (Yale University Press, New Haven, Conneticut; 1993).

    Google Scholar 

  34. Parkinson, G., Vojtechovsky, J., Clowney, L., Brünger, A. T. & Berman, H. M. Acta Crystallogr. D 52, 57–64 (1996).

    Article  CAS  Google Scholar 

  35. Marky, L. A. & Breslauer, K. J. Biopolymers 26, 1601–1620 (1987).

    Article  CAS  Google Scholar 

  36. Lavery, R. & Sklenar, H. J. J. Biomol. Struct. Dyn. 6, 655–667 (1989).

    Article  CAS  Google Scholar 

  37. Brünger, A. T. Nature 355, 472–475 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported through a grant by the National Institutes of Health to M.E. We are indebted to Northwestern University Medical School for supporting structural research through the Macromolecular Crystallography and Biochemical Computation Resource and to the Northwestern Drug Discovery Program. We thank B. Ross and his group at Isis Pharmaceuticals Inc. for providing the phosphoramidites for the dodecamer synthesis and S.T. Wallace for technical assistance. Part of the data collections were performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) Synchrotron Research Center located at Sector 5 of the Advanced Photon Source at Argonne National Laboratory, Argonne, Illinois. DND-CAT is supported by the E.I. DuPont de Nemours & Co., The Dow Chemical Company, the U.S. National Science Foundation and the State of Illinois.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muthiah Manoharan or Martin Egli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teplova, M., Minasov, G., Tereshko, V. et al. Crystal structure and improved antisense properties of 2'-O-(2-methoxyethyl)-RNA. Nat Struct Mol Biol 6, 535–539 (1999). https://doi.org/10.1038/9304

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9304

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing