Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The CuA domain of Thermus thermophilus ba3-type cytochrome c oxidase at 1.6 Å resolution

Abstract

The structure of the CuA-containing, extracellular domain of Thermus thermophilus ba3-type cytochrome c oxidase has been determined to 1.6 Å resolution using multiple X-ray wavelength anomalous dispersion (MAD). The Cu2S2 cluster forms a planar rhombus with a copper–copper distance of 2.51 ± 0.03 Å. X-ray absorption fine-structure (EXAFS) studies show that this distance is unchanged by crystallization. The CuA center is asymmetrical; one copper is tetrahedrally coordinated to two bridging cysteine thiolates, one histidine nitrogen and one methionine sulfur, while the other is trigonally coordinated by the two cysteine thiolates and a histidine nitrogen. Combined sequence–structure alignment of amino acid sequences reveals conserved interactions between cytochrome c oxidase subunits I and II.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Stereo ribbon diagram of Thermus ba3-CuA, with the position of every 10th amino acid labeled.
Figure 2: a, A schematic diagram of the geometry of the Thermus ba3-CuA center.
Figure 3: a, Stereo diagram of the structures of Thermus ba3-CuA (in red), CyoA (in blue), bovine (in yellow) and Paracoccus denitrificans subunit II (in green) overlaid on one another.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Trumpower, B.L. & Gennis, R.B. Ann. Rev. Biochem. 63, 675–716 ( 1994).

    Article  CAS  Google Scholar 

  2. Gennis, R.B. & Ferguson-Miller, S. Curr. Biol. 6, 36–38 (1996).

    Article  CAS  Google Scholar 

  3. Regan, J.J., Ramirez, B.E., Winkler, J.R., Gray, H.B. & Malmstrom, B.G. J. Bioenerg. Biomembr. 30, 35–39 (1998).

    Article  CAS  Google Scholar 

  4. Tsukihara, T. et al. Science 269, 1069– 1074 (1995).

    Article  CAS  Google Scholar 

  5. Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. Nature 376, 660–669 ( 1995).

    Article  CAS  Google Scholar 

  6. Wilmanns, M., Lappalainen, P., Kelly, M., Sauer-Eriksson, E. & Saraste, M. Proc. Natl. Acad. Sci. USA 92, 11955–11959 (1995).

    Article  CAS  Google Scholar 

  7. Zimmermann, B.H., Nitsche, C.I., Fee, J.A., Rusnak, F. & Munck, E. Proc. Natl. Acad. Sci. USA 85, 5779–5783 (1988).

    Article  CAS  Google Scholar 

  8. Keightley, J.A. et al. J. Biol. Chem. 270, 20345– 20358 (1995).

    Article  CAS  Google Scholar 

  9. Castresana, J., Lubben, M., Saraste, M. & Higgins, D.G EMBO J. 13, 2516–2525 (1994).

    Article  CAS  Google Scholar 

  10. Musser, S.M. & Chan, S.I. J. Mol. Evol. 46, 508–520 (1998).

    Article  CAS  Google Scholar 

  11. Soulimane, T. et al. Biochem. Biophys. Res. Commun. 237, 572–576 (1997).

    Article  CAS  Google Scholar 

  12. Oertling, W.A. et al. 33, 3128–3141 ( 1994).

  13. Beinert, H. Eur. J. Biochem. 245, 521–532 (1997).

    Article  CAS  Google Scholar 

  14. Ramirez, B.E., Malmstrom, B.G., Winkler, J.R. & Gray, H.B. Proc. Natl. Acad. Sci. USA 92, 11949– 11951 (1995).

    Article  CAS  Google Scholar 

  15. Blackburn, N.J. et al. J. Am. Chem. Soc. 119, 6135– 6143 (1997).

    Article  CAS  Google Scholar 

  16. Slutter, C.E. et al. Biochemistry 35, 3387– 3395 (1996).

    Article  CAS  Google Scholar 

  17. Murphy, E.P., Lindley, P.F. & Adman, E.T. Protein Sci. 6, 761– 770 (1997).

    Article  CAS  Google Scholar 

  18. Petratos, K., Dauter, Z. & Wilson, K.S. Acta Crystallogr. B 44, 628–636 (1988).

    Article  Google Scholar 

  19. Read, R.J. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  20. Sheldrick, G.M. In Proceedings of the CCP4 study weekend, January 1996 (eds Dodson, E., Moore, M., Ralph, A. & Bailey, S.) (Daresbury Laboratory, Daresbury, UK; 1996).

    Google Scholar 

  21. Brunger, A.T. Nature 355, 472–474 ( 1992).

    Article  CAS  Google Scholar 

  22. Neese, F., Zumft, W.G., Antholine, W.E. & Kroneck, P.M.H. J. Am. Chem. Soc. 118, 8692–8699 (1996).

    Article  CAS  Google Scholar 

  23. Farrar, J.A. et al. J. Am. Chem. Soc. 118, 11501– 11514 (1996).

    Article  CAS  Google Scholar 

  24. Gamelin, D.R. et al. J. Am. Chem. Soc. 120, 5246– 5263 (1998).

    Article  CAS  Google Scholar 

  25. Lappalainen, P., Watmough, N.J., Greenwood, C. & Saraste, M. Biochemistry 34, 5824–5830 (1995).

    Article  CAS  Google Scholar 

  26. Than, M.E. et al. Journal of Molecular Biology 271, 629–44 (1997).

    Article  CAS  Google Scholar 

  27. CCP4. Acta Crystallographica - Section D 50, 760–763 (1994).

  28. McRee, D.E. (Academic Press Limited, San Diego, 1993).

  29. McRee, D.E. J. Mol. Graphics 10, 44–46 (1992).

    Article  Google Scholar 

  30. Ramakrishnan, V. & Biou, V., Methods Enzymol. 276 538–557 ( 1997).

    Article  CAS  Google Scholar 

  31. Cowtan, K. & Main, P. Acta Cryst D54, 487–493 (1998).

    CAS  Google Scholar 

  32. Brunger, A.T. X-PLOR manual version 3.1 (Yale University, New Haven, Connecticut; 1992).

    Google Scholar 

Download references

Acknowledgements

The authors thank N. Jourdan for assistance with X-ray data collection, and J.M. Castagnetto for assistance with the metal distance searches. X-ray and EXAFS data collection were performed at SSRL, operated by the Department of Energy, Office of Basic Energy Sciences. The SSRL Biotechnology Program is supported by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program, and by the Department of Energy, Office of Biological and Environmental Research. The Cambridge Structural Database and the Scripps Metalloprotein Database (http://metallo.scripps.edu) were searched for Cu-O bond distances in small molecules and proteins, respectively. This work was supported by the National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James A. Fee or Duncan E. McRee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, P., Blackburn, N., Sanders, D. et al. The CuA domain of Thermus thermophilus ba3-type cytochrome c oxidase at 1.6 Å resolution. Nat Struct Mol Biol 6, 509–516 (1999). https://doi.org/10.1038/9274

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing