Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum

Abstract

Calsequestrin, the major Ca2+ storage protein of muscle, coordinately binds and releases 40–50 Ca2+ ions per molecule for each contraction-relaxation cycle by an uncertain mechanism. We have determined the structure of rabbit skeletal muscle calsequestrin. Three very negative thioredoxin-like domains surround a hydrophilic center. Each monomer makes two extensive dimerization contacts, both of which involve the approach of many negative groups. This structure suggests a mechanism by which calsequestrin may achieve high capacity Ca2+ binding. The suggested mechanism involves Ca2+-induced collapse of the three domains and polymerization of calsequestrin monomers arising from three factors: N-terminal arm exchange, helix–helix contacts and Ca2+ cross bridges. This proposed structure-based mechanism accounts for the observed coupling of high capacity Ca2+ binding with protein precipitation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yano, K. & Zarain-Herzberg, A. Sarcoplasmic reticulum calsequestrins: structural and functional properties. Mol. Cell Blochem. 135, 61–70 (1994).

    Article  CAS  Google Scholar 

  2. Ikemoto, N., Antoniu, B., Kang, J.J., M'esz'aros, L.G. & Ronjat, M. Intravesicular calcium transient during calcium release from Sarcoplasmic reticulum. Biochemistry 30, 5230–5237 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Kawasaki, T. & Kasai, M. Regulation of calcium channel in Sarcoplasmic reticulum by calsequestrin. Biochem. Biophys. Res. Common. 199, 1120–1127 (1994).

    Article  CAS  Google Scholar 

  4. MacLennan, D.H. & Wong, P.T. Isolation of a calcium-sequestering protein from Sarcoplasmic reticulum. Proc. Natl. Acad. Sci. USA 68, 1231–1235 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. MacLennan, D.H., Campbell, K.P. & Reithmeier, R.A.F. Calsequestrin, Calcium and Cell Function 4, 151–173 (1983).

    Article  CAS  Google Scholar 

  6. Somlyo, A.V., Gonzalez-Serratos, H., Shuman, H., McClennan, G. & Somlyo, A.P. Calcium release and ionic changes in the Sarcoplasmic reticulum of tetanized muscle: an electron-probe study. J. Cell Biol. 90, 577–594 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Lytton, J. & MacLennan, D.H. In the heart and cardiovascular system. (eds H. A. 40. Fozzard, E. Harber, R. B. Jennings, A. M. Katz & H. E. Morgan) 1203–1222 (Raven Press Ltd., New York; 1992).

    Google Scholar 

  8. Mitchell, R.D., Simmerman, H.K.B. & Jones, L.R. Ca2+ binding effects on protein conformation and protein interactions of canine cardiac calsequestrin. J. Biol. Chem. 263, 1376–1381 (1988).

    CAS  PubMed  Google Scholar 

  9. Guo, W. & Campbell, K.P. Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the Sarcoplasmic reticulum. J. Biol. Chem. 270, 9027–9030 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Fliegel, L. Amino acid sequence of rabbit fast-twitch skeletal muscle calsequestrin deduced from cDNA and peptide sequencing. Proc. Natl. Acad. Sci. USA 84, 1167–1171 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fujii, J., Wiilard, H.F. & MacLennan, D.H. Characterization and localization to human chromosome 1 of human fast-twitch skeletal muscle calsequestrin gene. Somat. Cell. Mol. Genet. 16 185–189 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Choi, E.S. & Clegg, D.O. Identification and developmental expression of a chicken calsequestrin homolog. Dev. Biol. 142, 169–177 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Arai, M., Alpert, N.R. & Periasamy, M. Cloning and characterization of the gene encoding rabbit cardiac calsequestrin. Gene 109, 275–279 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Treves, S., Vilsen, B., Chiozzi, P., Andersen, J.P. & Zorzato, F. Molecular cloning, functional expression and tissue distribution of the cDNA encoding frog skeletal muscle calsequestrin. Biochem. J. 283, 767–772 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zarain-Herzberg, A., Fliegel, L. & MacLennan, D.H. Structure of the rabbit fast-twitch skeletal muscle calsequestrin gene. J. Biol. Chem. 263, 4807–4812 (1988).

    CAS  PubMed  Google Scholar 

  16. Scott, B.T., Simmerman, H.K., Collins, H.J., Nadal-Ginard, B. & Jones, L.R. Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning. J. Biol. Chem. 263, 8958–8964 (1988).

    CAS  PubMed  Google Scholar 

  17. Ikemoto, N., Nagy, B., Bhatnagar, G.M. & Gergely, J. Studies on a metal-binding protein of the Sarcoplasmic reticulum. J. Biol. Chem. 249, 2357–2365 (1974).

    CAS  PubMed  Google Scholar 

  18. Ostwald, T.J., MacLennan, D.H. & Dorrington, K.J. Effects of cation binding on the conformation of calsequestrin and the high affinity calcium-binding protein of Sarcoplasmic reticulum. J. Biol. Chem. 249. 5867–5871 (1974).

    CAS  PubMed  Google Scholar 

  19. Aaron, B.M., Oikawa, K., Reithmeier, R.A. & Sykes, B.D. Characterization of skeletal muscle calsequestrin by 1H NMR spectroscopy. J. Biol. Chem. 259, 11876–11881 (1984).

    CAS  PubMed  Google Scholar 

  20. He, Z., Dunker, A.K., Wesson, C.R. & Trumble, W.R. Ca(2+)-induced folding and aggregation of skeletal muscle Sarcoplasmic reticulum calsequestrin. The involvement of the trifluoperazine-binding site. J. Biol. Chem. 268, 24635–24641 (1993).

    CAS  PubMed  Google Scholar 

  21. Ikemoto, N., Bhatnagar, G.M., Nagy, B. & Gergely, J. Interaction of divalent cations with the 55,000-dalton protein component of the Sarcoplasmic reticulum. Studies of fluorescence and circular dichroism. J. Biol. Chem. 247, 7835–7837 (1972).

    CAS  PubMed  Google Scholar 

  22. Cozens, B. & Reithmeier, R.A. Size and shape of rabbit skeletal muscle calsequestrin. J. Biol. Chem. 259, 6248–6252 (1984).

    CAS  PubMed  Google Scholar 

  23. Williams, R.W. & Beeler, T.J. Secondary structure of calsequestrin in solutions and in crystals as determined by Raman spectroscopy. J. Biol. Chem. 261, 12408–12413 (1986).

    CAS  PubMed  Google Scholar 

  24. Ohnishi, M. & Rethmeier, R.A. Fragmentation of rabbit skeletal muscle calsequestrin: spectral and ion binding properties of the carboxyl-terminal region. Biochemistry 26, 7458–7465 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Jorgensen, A.O., Shen, A.C., Campbell, K.P. & Maclennan, D.H. Ultrastructural localization of calsequestrin in rat skeletal muscle by immunoferritin labeling of ultrathin frozen sections. J. Cell Biol. 97, 1573–1581 (1983).

    Article  CAS  PubMed  Google Scholar 

  26. Hidalgo, C., Donoso, P. & Rodrigues, R.H. Protons induce calsequestrin conformational changes. Biophys. J. 71, 2130–2137 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Strynadka, N.C. and James, M.N. Crystal structures of the helix-loop-helix calcium-binding proteins. Anno. Rev. Biochem. 58, 951–998 (1989).

    Article  CAS  Google Scholar 

  28. Wright, D.L., Holloway, J.H. & Reilley, C.N. Anal. Chem. 37, 884 (1965).

    Article  CAS  Google Scholar 

  29. Krause, K.H., Milos, M., Luan-Rilliet, Y., Lew, D.P. & Cox, J.A. Thermodynamics of cation binding to rabbit skeletal muscle calsequestrin. Evidence for distinct Ca(2+)- and Mg(2+)-binding sites. J. Biol. Chem. 266, 9453–9459 (1991).

    CAS  PubMed  Google Scholar 

  30. Maurer, A., Tanaka, M., Ozawa, T. & Fleischer, S. Purification and crystallization of the calcium binding protein of Sarcoplasmic reticulum from skeletal muscle. Proc. Nat. Acad. Sci. USA 82, 4036–4040 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hayakawa, K. et al. Crystallization of canine cardiac calsequestrin. J. Mol. Biol. 235, 357–360 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Katti, S.K., LeMaster, D.M. & Eklund, H. Crystal structure of thioredoxin from Escherichia coli at 1.68 Å resolution. J. Mol. Biol. 212, 167–184 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Martin, J.L., Bardwell, J.C. & Kuriyan, J. Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature 365, 4640–468 (1993).

    Google Scholar 

  34. Hu, S.H., Peek, J.A., Rattigan, E., Taylor, R.K. & Martin, J.L. Structure of TcpG, the DsbA protein folding catalyst from Vibrio cholerae. J. Mol. Biol. 268, 137–146 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Lytton, J. & Nigam, S.K. Intracellular calcium: molecules and pools. Curr. Opin. Cell. Biol. 4, 220–226 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Van, P.N., Rupp, K., Lampen, A. & Soling, H.D. CaBP2 is a rat homolog of ERp72 with proteindisulfide isomerase activity. Eur. J. Biochem. 213, 789–795 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Sonnichsen, B. et al. Retention and retrieval: both mechanisms cooperate to maintain calreticulin in the endoplasmic reticulum. J. Cell. Sci. 107, 2705–2717 (1994).

    PubMed  Google Scholar 

  38. Darby, N.J., Kemmink, J. & Creighton, T.E. Identifying and characterizing a structural domain of protein disulfide isomerase. Biochemistry 35, 10517–10528 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Branden, C. Relation between structure and function of α/β proteins. Q. Rev. Biophys. 13, 317–338 (1980).

    Article  Google Scholar 

  40. Burley, S.K. and Petsko, G.A. Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229, 23–28 (1985).

    Article  CAS  PubMed  Google Scholar 

  41. Franzini-Armstrong, C., Kenney, L.J. & Varriano-Marston, E. The structure of calsequestrin in triads of vertebrate skeletal muscle: a deep-etch study. J. Cell. Biol. 105, 49–56 (1987).

    Article  CAS  PubMed  Google Scholar 

  42. Saito, A., Seller, S., Chu, A. & Fleischer, S. Preparation and morphology of Sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J. Cell. Biol. 99, 875–885 (1984).

    Article  CAS  PubMed  Google Scholar 

  43. Maurer, A., Tanaka, M., Ozawa, T. & Fleischer, S. Purification and crystallization of calcium-binding protein from skeletal muscle Sarcoplasmic reticulum. Meths Enz. 157, 321–328 (1988).

    Article  CAS  Google Scholar 

  44. Bennet, M.J., Schlunegger, M.P. & Eisenberg, D. 3D domain swapping: a mechanism for oligomer assembly. Protein Sci. 4, 2455–2468 (1995)

    Article  Google Scholar 

  45. Bergdoll, M., Remy, M.H., Cagnon, C., Masson, J.M. & Dumas, P. Proline-dependent oligomerization with arm exchange. Structure 5. 391–401 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Nurizzo, D. et al. N-terminal arm exchange is observed in the 2.15 Å crystal structure of oxidized nitrite reductase from Pseudomonas aeruginosa. Structure 5, 1157–1171 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, L., Kelley, J., Schmeisser, G., Kobayashi, Y.M. & Jones, L.R. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional Sarcoplasmic reticulum membrane. J. Biol. Chem. 272, 23389–23397 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Levin, R.M. & Weiss, B. Binding of trifluoperazine to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. Mol. Pharmacol. 13, 690–697–(1977).

    CAS  PubMed  Google Scholar 

  49. Cachia, P.J., Gariepy, J. & Hodges, R.S. In Calmodulin antagonists and cellular physiology. (eds Hidaka, H., & Hartshorne, D.J.) 63–88 (Academic Press, Inc., Orlando, Florida; 1985).

    Book  Google Scholar 

  50. Gari'epy, J. & Hodges, R.S. Localization of a trifluoperazine binding site on troponin C. Biochemistry 22. 1586–1594 (1983).

    Article  CAS  Google Scholar 

  51. Payne, M.E. et al. Calcium/calmodulin-dependent protein kinase II. Characterization of distinct calmodulin binding and inhibitory domains. J. Biol. Chem. 263, 7190–7195–(1988).

    CAS  PubMed  Google Scholar 

  52. Kelly, P.T., Weinberger, R.P. & Waxham, M.N. Active site-directed inhibition of Ca2+/calmodulin-dependent protein kinase type II by a bifunctional calmodulin-binding peptide. Proc. Natl. Acad. Sci. USA 85, 4991–4995 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Colbran, R.J., Fong, Y.L., Schworer, C. & Soderling, T.R. Regulatory interactions of the calmodulin-binding, inhibitory, and autophosphorylation domains of Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem 263, 18145–18151 (1988).

    CAS  PubMed  Google Scholar 

  54. Blumenthal, D.K. et al. Identification of the calmodulin-binding domain of skeletal muscle myosin light chain kinase. Proc. Natl. Acad. Sci. USA 82, 3187–3191–(1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cook, W.J., Walter, L.J. & Walter, M.R. Drug binding by calmodulin: crystal structure of a calmodulin-trifluoperazine complex. Biochemistry 33, 15259–15265 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Ikura, M. et al. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 256, 632–638 (1992).

    Article  CAS  PubMed  Google Scholar 

  57. Meador, W.E., Mean, A.R. & Quiocho, F.A. Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin-peptide complex. Science 257, 1251–1255 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Meador, W.E., Mean, A.R. & Quiocho, F.A. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science 262, 1718–1721 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Furey, W. & Swanminathan, S. PHASES-95: a program package for the processing and analysis of diffraction data from macromolecules. Meths Enz. 277, 590–620 (1997).

    Article  CAS  Google Scholar 

  60. Wang, B.C. Resolution of phase ambiguity in macromolecular crystallography. Meths Enz. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  61. Jones, T.A., Zou, J.Y., Cowan, S. & W., Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  62. Brunger, A.T. X-PLOR A system for crystallography and NMR (Version 3.1) (Yale University, New Haven, Connecticut; 1992).

  63. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structure. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  64. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins: Struct. Funct. and Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  65. Bacon, D.J. & Anderson, W.F. A fast algorithm for rendering space filling molecular pictures. J. Mol. Graphics. 6, 219–222 (1988).

    Article  Google Scholar 

  66. Meritt, E.A. & Murphy, M.E.P. Raster3D Version 2.0. A Program for Photorealistic Molecular Graphics. Acta Crystallogr. D. 50, 869–873 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Trumble, W., Liao, H. et al. Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum. Nat Struct Mol Biol 5, 476–483 (1998). https://doi.org/10.1038/nsb0698-476

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0698-476

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing