Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a specific acyl-enzyme complex formed between β-casomorphin-7 and porcine pancreatic elastase

Abstract

Mass spectrometric screening reveals that an unmodified natural heptapeptide—human β-casomorphin-7, an internal sequence of human β-casein that possesses opioid-like activity—reacts with porcine pancreatic elastase to form an unusually stable acyl-enzyme complex at low pH. X-ray crystallographic analysis (to 1.9 Å resolution) at pH 5 shows continuous electron density linking the C-terminal isoleucine of β-casomorphin-7 to Ser 195 through an ester bond. The structure reveals a well defined water molecule (Wat 317), equidistant between the carbon of the ester carbonyl and Nε2 of His 57. Deprotonation of Wat 317 will produce a hydroxide ion positioned to attack the ester carbonyl through the favoured Bürgi-Dunitz trajectory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blow, D.M. Structure and mechanism of chymotrypsin. Acc. Chem. Res. 9, 145–152 (1976).

    Article  CAS  Google Scholar 

  2. Bode, W., Meyer, E., Jr. & Powers, J.C. Human leukocyte and porcine pancreatic elastase: X-ray crystal structures, mechanism, substrate specificity, and mechanism-based inhibitors. Biochemistry 28, 1951–1963 (1989).

    Article  CAS  Google Scholar 

  3. Graf, L. Structural basis of serine protease action: the fourth dimension. in Natural Sciences and HumanThought (ed Zwilling) 139–148 (Springer-Verlag, Berlin, 1995).

    Chapter  Google Scholar 

  4. Warshel, A. & Russell, S. Theoretical correlation of structure and energetics in the catalytic reaction of trypsin. J. Am, Chem. Soc. 108, 6569–6579 (1986).

    Article  CAS  Google Scholar 

  5. Fothergill, M., Goodman, M.F., Petruska, J., Warshel, A. Structure-energy analysis of the role of metal ions in phosphodiester bond hydrolysis by DNA polymerase I. J. Am. Chem. Soc. 117, 11620–11627.

    Article  CAS  Google Scholar 

  6. Dixon, M.M. & Matthews, B.W. Is γ-chymotrypsin a tetrapeptide acyl-enzyme adduct of α-chymotrypsin? Biochemistry 28, 7033–7038 (1989).

    Article  CAS  Google Scholar 

  7. Harel, M., Su, C.-T., Frolow, F., Silman, I. & Sussman, J.L. γ-Chymotrypsin is a complex of α-chymotrypsin with its own autolysis products. Biochemistry 30, 5217–5225 (1991).

    Article  CAS  Google Scholar 

  8. Dixon, M.M., Brennan, R.G. & Matthews, B.W. Structure of γ-chymotrypsin in the range pH 2.0 to pH 10.5 suggests that γ-chymotrypsin is a covalent acyl-enzyme adduct at low pH. Int. J, Biol. Macromol. 13, 89–96 (1991).

    Article  CAS  Google Scholar 

  9. Singer, P.T., Smalås, A., Carty, R.P., Mangel, W.F. & Sweet, R.M. The hydrolytic water molecule in trypsin, revealed by time-resolved Laue crystallography. Science 259, 669–673 (1993).

    Article  CAS  Google Scholar 

  10. Perona, J.J., Craik, C.S. & Fletterick, R.J. Locating the catalytic water molecule in serine proteases. Science 261, 620 (1993).

    Article  CAS  Google Scholar 

  11. Singer, P.T., Smals, A., Carty, R.P., Mangel, W.F. & Sweet, R.M. Locating the water molecule in serine proteases: Response. Science 261, 621–622 (1993).

    Article  CAS  Google Scholar 

  12. Ding, X., Rasmussen, B.F., Petsko, G.A. & Ringe, D. Direct structural observation of an acyl-enzyme intermediate in the hydrolysis of an ester substrate by elastase. Biochemistry 33, 9285–9293 (1994).

    Article  CAS  Google Scholar 

  13. Blanchard, H. & James, M.N.G. A crystallographic re-investigation into the structure of Streptomyces griseus proteinase A reveals an acyl-enzyme intermediate. J. Mol. Biol. 241, 574–587 (1994).

    Article  CAS  Google Scholar 

  14. Nohmi, T. & Fenn, F.J. Electrospray mass spectrometry of poly(ethylene glycols) with molecular weights up to five million. J. Am. Chem. Soc. 114, 3241–3246 (1992).

    Article  CAS  Google Scholar 

  15. Aplin, R.T., Baldwin, J.E., Schofield, C.J. & Waley, S.G. Use of electrospray mass-spectrometry to directly observe an acyl-enzyme intermediate in beta-lactamase catalysis. FEBS Lett. 277, 212–214 (1990).

    Article  CAS  Google Scholar 

  16. Ashton, D.S. et al. Some electrospray mass spectrometric evidence for the existence of covalent O-acyl enzyme intermediates. FEBS Lett. 292, 201–204 (1991).

    Article  CAS  Google Scholar 

  17. Aplin, R.T., Robinson, C.V., Schofield C.J. & Westwood, N.J. An investigation into the mechanism of elastase inhibition by cephalosporins using electrospray ionisation mass spectrometry. Tetrahedron 49, 10903–10912 (1993).

    Article  CAS  Google Scholar 

  18. Greenberg, R., Groves, M.L. & Dower, H.J. Human β-casein. J. Biol. Chem. 259, 5132–5138 (1984).

    CAS  PubMed  Google Scholar 

  19. β-Casomorphins and Related Peptides (eds Nyberg, F. & Brantl, V.) (Fyris-Tryck AB, Uppsala, Sweden, 1990).

  20. Del Mar, E.G., Largman, C., Brodrick, J.W., Fassett, M. & Geokas, M.C. Substrate specificity of human pancreatic elastase 2. Biochemistry 19, 468–472 (1980).

    Article  CAS  Google Scholar 

  21. Meyer, E., Cole, G., Radhakrishnan, R. & Epp, O. Structure of native porcine pancreatic elastase at 1.65 Å resolution. Acta Cryst. B44, 26–38 (1988).

    Article  CAS  Google Scholar 

  22. Teschemacher, H. & Koch, G. & Koch, G. β-Casomorphins: possible physiological significance., in β-Casomorphins and related peptides (eds Nyberg, F. & Brantl, V.) 143–149 (Fyris-Tryck AB, Uppsala, Sweden, 1990).

    Google Scholar 

  23. Taira, T., Hilakivi, L.A., Aalto, J. & Hilakivi, I. Effect of beta-casomorphin on neonatal sleep in rats. Peptides 11, 1–4 (1990). 30. Thompson, R.C. Binding of peptides to elastase: implication for the mechanism of substrate hydrolysis. Biochemistry 13, 5495–5501 (1974).

    Article  CAS  Google Scholar 

  24. Thompson, R.C. Binding of peptides to elastase: implication for the mechanism of substrate hydrolysis. Biochemistry 13, 5495–5501 (1974).

    Article  CAS  Google Scholar 

  25. James, M.N.G., Sielecki, A.R., Brayer, G.D., Delbaere, L.T. & Bauer, C.A. Structures of product and inhibitor complexes of Streptomyces griseus protease A at 1.8 Å resolution. J. Mol. Biol. 144, 43–88 (1980).

    Article  CAS  Google Scholar 

  26. Brügi, H.B., Dunitz, J.D. & Shefter, E. Geometrical reaction coordinates. II. Nucleophilic addition to a carbonyl group. J. Am. Chem. Soc. 95, 5065–5067 (1973).

    Article  Google Scholar 

  27. Maveyraud, L., Massova, I., Birck, C., Miyashita, K., Samama, J-P. & Mobashery, S. Crystal structure of 6a-(hydroxymethyl)penicillanate complexed to the TEM-1 β-lactamase from Esherichia coli: evidence on the mechanism of action of a novel inhibitor designed by a computer-aided process. J. Am. Chem. Soc. 118, 7435–7447 (1996).

    Article  CAS  Google Scholar 

  28. Hagmann, W.K. et al. Prevention of human leukocyte elastase-mediated lung damage by 3-alkyl-4-azetidinones. Bioorg. Med. Chem. Letts. 1, 545–550 (1991).

    Article  CAS  Google Scholar 

  29. Edwards, P.D., Meyer, E.F., Jr., Vijayalakshmi, J., Tuthill, P.A., Andisik, D.A., Gomes, B. & Strimpler, A. Design, synthesis, and kinetic evaluation of a unique class of elastase inhibitors, the peptidyl α-ketobenzoxazoles, and the X-ray crystal structure of the covalent complex between porcine pancreatic elastase and Ac-Ala-Pro-Val-2-benzoxazole. J. Am. Chem. Soc. 114, 1854–1863 (1992).

    Article  CAS  Google Scholar 

  30. Lineweaver, H. & Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56, 658–666 (1934).

    Article  CAS  Google Scholar 

  31. Dixon, M. The determination of enzyme inhibitor constants. Biochem. J. 55, 170–171 (1953).

    Article  CAS  Google Scholar 

  32. Cornish-Bowden, A. A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem. J. 137, 143–144 (1974).

    Article  CAS  Google Scholar 

  33. Otwinowski, Z. Oscillation data reduction program. in Data Collection and Processing (eds Sawyer, L., Isaacs, N.W. & Bailey, S.) 55–62 (DL/SCI/R34, Daresbury Laboratory, Warrington, U.K., 1993).

    Google Scholar 

  34. Brünger, A.T., Kuriyan, J. & Karplus, M. Cystallographic R-factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  Google Scholar 

  35. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  36. Kraulis, P.J. Molscript - a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  37. Merritt, E.A. & Murphy, M.E.P. Raster3d Version 2.0 - A program for photorealistic molecular graphics. Acta Crystallogr. D50, 869–873 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilmouth, R., Clifton, I., Robinson, C. et al. Structure of a specific acyl-enzyme complex formed between β-casomorphin-7 and porcine pancreatic elastase. Nat Struct Mol Biol 4, 456–462 (1997). https://doi.org/10.1038/nsb0697-456

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0697-456

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing