Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of mannose-specific snowdrop (Galanthus nivalis) lectin is representative of a new plant lectin family

An Erratum to this article was published on 01 August 1995

Abstract

Tetrameric Galanthus nivalis agglutinin (50,000 Mr) belongs to a super-family of α-D-mannose-specific plant bulb lectins known to be potent inhibitors of retroviruses. The 2.3 Å crystal structure of this lectin complexed with methyl α-D-mannose reveals a novel three-fold symmetric β-sheet polypeptide fold. Three antiparallel four-stranded β-sheets, each with a conserved mannose-binding site, are arranged as a 12-stranded β-barrel. The tetramer displays 222 symmetry. Pairs of monomers form stable dinners through C-terminal strand exchange. The so formed hybrid β-sheets are the sites for high affinity mannose binding in the dimer interface. Occupancy observed at corresponding sites in other β-sheets suggests a potential for twelve sites per tetramer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Van Damme, E.J.M., Allen, A.K. & Peumans, W.J. Isolation and characterization of a lectin with exclusive specificity towards mannose from snowdrop (Galanthus nivalis) bulbs. FEBS Lett. 215, 140–144 (1987).

    Article  CAS  Google Scholar 

  2. Van Damme, E.J.M., Goldstein, I.J. & Peumans, W.J. A comparative study of mannose-binding lectins from the amaryllidaceae and alliaceae. Phytochemistry 30, 509–514 (1991).

    Article  CAS  Google Scholar 

  3. Sharon, N., N. & Lis, H. Legume lectins-a large family of homologous proteins. FASEB J. 4, 3198–3208 (1991).

    Article  Google Scholar 

  4. Drickamer, K. Ca2+-dependent carbohydrate-recognition domains in animal proteins. Curr. Opin. struct. Biol. 3, 393–400 (1993).

    Article  CAS  Google Scholar 

  5. Shibuya, N., Goldstein, I.J., Van Damme, E.J.M. & Peumans, W.J. Binding Properties of a mannose-specific lectin from the snowdrop (Galanthus nivalis) bulb. J. biol. Chem., 263, 728–734 (1988).

    CAS  PubMed  Google Scholar 

  6. Kaku, H., Goldstein, I.J. & Oscarson, S. Interaction of five D-mannose specific lectins with a series of synthetic branched trisaccharides. Carbohydrate Res. 213, 109–116 (1991).

    Article  CAS  Google Scholar 

  7. Kaku, H. & Goldstein, I.J. Interaction of linear manno-oligosaccharides with three mannose-specific bulb lectins. Comparison with mannose/glucose binding lectins. Carbohydrate Res. 229, 337–346(1992).

    Article  CAS  Google Scholar 

  8. Balzarini, J., Schols, D., Neyts, J., Van Damme, E.J.M., Peumans, W. & De Clerq, E. α-(1,3) and α-(1,6)—mannose-specific plant lectins are markedly inhibitory to Human Immunodeficiency Virus and cytomegalovirus infections in vitro . Antimicrob. Agents Chemotherapy 35, 410–416 (1991).

    Article  CAS  Google Scholar 

  9. Gilljam, G. Envelope glycoproteins of HIV-1, HIV-2 and SIV purified with Galanthus nivalisagglutinin induce strong immune responses. Aids Res. human Retroviruses 9, 431–438 (1993).

    Article  CAS  Google Scholar 

  10. Shibuya, N., Berry, J.E. & Goldstein, I.J. One-step purification of murine IgM and human α-2 macroglobulin by affinity chromatography on immobilized snowdrop bulb lectin. Arch. biochem. Biophys. 267, 676–680(1988).

    Article  CAS  Google Scholar 

  11. Pusztai, A. et al. Kidney bean lectin-induced Escherichia coli overgrowth in the small intestine is blocked by GNA, a mannose-specific Lectin. J. appl. Bacteriol. 75 360–368 (1993).

    Article  CAS  Google Scholar 

  12. Van Damme, E.J.M. et al. Biosynthesis, primary structure and molecular cloning of snowdrop (Galanthus nivalis L.) Lectin. Eur. J. Biochem. 202, 23–30 (1991).

    Article  CAS  Google Scholar 

  13. Murzin, A.G., Lesk, A.M. & Chotia, C. β-Trefoil fold: Patterns of structure and Ssequence in the kunitz inhibitors, interleukins 1β and 1α, and fibroplast growth factors. molec. Biol. 223, 531–543(1992).

    Article  CAS  Google Scholar 

  14. Abe, K., Yamashita, H., Arai, S. & Kurihra, Y. Molecular cloning of curculin a novel taste-modifying protein with a sweet taste. Biochim. biophys. Acta 1130, 232–234 (1992).

    Article  CAS  Google Scholar 

  15. Bain, G., Grant, C.E. & Tsang, A. Isolation and characterization of complementary DNA clones encoding polypeptides related to a Dictyostelium discoideumcyclic AMP binding protein. J. gen. Microbiol. 137, 501–508 (1991).

    Article  CAS  Google Scholar 

  16. Naismith, J.H. et al. Refined structure of concanavalin A complexed with methyl α-D-mannopyranoside at 2.0 Å resolution and comparison with the saccharide-free structure. Acta crystallogr. D50, 847–858 (1994).

    CAS  Google Scholar 

  17. Rini, J.M., Hardman, K.D., Einspahr, H., Suddath, F.L. & Carver, J.P. X-ray crystal structure of a pea lectin-trimannoside complex at 2.6 Å resolution. J. biol. Chem. 268 10126–10132 (1993).

    CAS  PubMed  Google Scholar 

  18. Bourne, Y., Roussel, A., Frey, M., Rouge, P., Fontecilla-Camps, J.-C. & Cambillau, C. Three-dimensional structures of complexes of Lathyrus ochrusisolectin I with glucose and mannose: Fine specificity of the monosaccharide-binding bite. Proteins Struct. Funct. Genet. 8, 365–376 (1990).

    Article  CAS  Google Scholar 

  19. Weis, W.I., Drickamer, K. & Hendrickson, W.A. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature 360, 127–134(1992).

    Article  CAS  Google Scholar 

  20. Wright, C.S., Kaku, H. & Goldstein, I.J. Crystallization and preliminary X-ray diffraction results of snowdrop (Galanthus nivalis) lectin. J. biol. Chem. 265, 1676–1677 (1990).

    CAS  PubMed  Google Scholar 

  21. Sobottka, S.E., Cornick, G.G., Kretsinger, R.H., Rains, R.G., Stephens, W.A. & Weissman, L.J. A MWPC X-ray diffractometer facility for protein crystallography. Nucl. Instrum. Meth. 220, 575–581 (1984).

    Article  CAS  Google Scholar 

  22. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta crystallogr. D50, 760–763 (1994).

  23. Rould, M.A., Perona, J.J. & Steitz, T.A. Improving multiple isomorphous replacement phasing by heavy-atom refinement using solvent-flattened phases. Acta crystallogr. A48, 751–756 (1992).

    Article  CAS  Google Scholar 

  24. Cura, V., Krishnaswamy, S. & Podjarny, A.D. Heavy-atom refinement against solvent-flattened phases. Acta crystallogr. A48, 756–764 (1992).

    Article  CAS  Google Scholar 

  25. Furey, W. & Swaminathan, S. PHASES-A program package for the processing and analysis of diffraction data from macromolecules. In American crystallographic association meeting abstracts, Series 2, Vol 18, 73 (1990).

    Google Scholar 

  26. Otwinowski, Z., In Proceedings of CCP4 study Weekend, 25–26 Jan. 1991 Isomorphous replacement and anomalous scattering,(eds Wolf, W., Evans, P. R. & Leslie, A. G. W.) 80–86 (SERC Daresbury Laboratory, Warrington, U.K.; 1991).

    Google Scholar 

  27. Jones, T.A., In Molecular replacement (ed. EJ. Dodson) 91–105 (SERC Daresbury Laboratory, Warrington, U.K.; 1992).

    Google Scholar 

  28. Jones, T.A. & Thirup, S. Using known substructures in protein model building and crystallography. EMBO J. 5, 819–822 (1986).

    Article  CAS  Google Scholar 

  29. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  30. Brünger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R Factor Refinement by Molecular Dynamics. Science 235, 458–460 (1987).

    Article  Google Scholar 

  31. Bernstein, F.C. et al. The protein data bank: a computer-based archival file for macromolecular structures. J. molec. Biol. 112 535–542 (1977).

    Article  CAS  Google Scholar 

  32. Bricogne, G. Methods and programs for direct-space exploitation of geometric redundancies. Acta crystallogr. A32, 832–847 (1976).

    Article  CAS  Google Scholar 

  33. Wang, B.-C. Resolution of phase ambiguity in macromolecular crystallography. Meths Enzymol. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  34. Zang, K.Y.J. & Main, P. Histogram matching as a new density modification technique for phase refinement and extension of protein molecules. Acta crystallogr. A46, 41–46 (1990).

    Article  Google Scholar 

  35. Brünger, A.T., Free R value: A novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  Google Scholar 

  36. Kraulis, P. Molscript: A program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  37. Merrit, E.A. & Murphy, M.E.P. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta crystallogr. D50, 869–873 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hester, G., Kaku, H., Goldstein, I. et al. Structure of mannose-specific snowdrop (Galanthus nivalis) lectin is representative of a new plant lectin family. Nat Struct Mol Biol 2, 472–479 (1995). https://doi.org/10.1038/nsb0695-472

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0695-472

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing