Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elucidating the folding problem of helical peptides using empirical parameters

Abstract

Using an empirical analysis of experimental data we have estimated a set of energy contributions which accounts for the stability of isolated α-helices. With this database and an algorithm based on statistical mechanics, we describe the average helical behaviour in solution of 323 peptides and the helicity per residue of those peptides analyzed by nuclear magnetic resonance. Moreover the algorithm successfully detects the α-helical tendency, in solution, of a peptide corresponding to a β-strand of ubiquitin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Serrano, L., Matouschek, A.R. & Fersht, A.R. The folding of an enzyme VI: the folding pathway of Barnase. Comparison with theoretical models. J. molec. Biol. 224, 847–859 (1992).

    CAS  PubMed  Google Scholar 

  2. Matthews, C.R. Pathways of protein folding. A. Rev. Biochem. 62, 653–683 (1993).

    Article  CAS  Google Scholar 

  3. Zimm, B.H. & Brag, J.K. Theory of the phase transition between helix and random coil in polypeptide chains. J. chem. phys. 31, 526 (1959).

    CAS  Google Scholar 

  4. von Dreele, P.H., Lotan, N., Ananthanarayan, V.S., Andreatta, R.H., Poland, D. & Scheraga, H.A. Helix-coil stability parameters for the naturally occurring amino acids in water. II. Characterization of host polymers and application of host-guest technique to random poly[(hydroxypropyl)glutamine-co-(hydroxybuthyl)glutamine]. Macromolecules 4, 408–417 (1971).

    Google Scholar 

  5. Finkelstein, A.V., Badretinov, A.Y. & Ptitsyn, O.B. Physical reasons for secondary structure stability: α-helices in short peptides. Proteins Struc. Func. Genet. 10, 287 (1991)

    CAS  Google Scholar 

  6. Ptitsyn, O.B. Secondary structure formation and stability. Curr. Opin. struct. Biol. 2, 13–20 (992).

    Google Scholar 

  7. Finkelstein, A.V. & Ptitsyn, O.B. A theory of protein molecule self organization. IV. Helical and irregular local structures of unfolded protein chains. J. molec. Biol. 103, 15 (1976).

    CAS  PubMed  Google Scholar 

  8. Gans, P.J., Lyu, P.C., Manning, M.C., Woody, R.W. & Kallenbach, N.R. . The helix-coil transition in heterogeneous peptides with specific side-chain interactions: theory and comparison with CD spectral data. Biopolymers 31, 1605–1614 (1991).

    CAS  PubMed  Google Scholar 

  9. Chen, C.C., Zhu, Y., King, J.A. & Evans, L. A molecular thermodynamic approach to predict the secondary structure of homopolypeptides in aqueous systems. Biopolymers 32, 1375–1392 (1992).

    CAS  PubMed  Google Scholar 

  10. Qian, H. Single-residue substitution in homopolypeptides: perturbative helix-coil theory at a single site. Biopolymers 33, 1605–1616 (1993).

    CAS  PubMed  Google Scholar 

  11. Dyson, H.J. & Wright, P. Peptide conformation and protein folding. Curr. Opin. struct. Biol. 3, 60–65 (1993).

    CAS  Google Scholar 

  12. Fukugita, M., Lancaster, D. & Mitchard, M.G. Kinematics and thermodynamics of a folding heteropolymer. Proc. natn. Acad. Sci. U.S.A. 90, 6365–6368 (1993).

    CAS  Google Scholar 

  13. Park, S.H., Shalongo, W. & Stellwagen, E. Residue helix parameters obtained from dichroic analysis of peptides of defined sequence. Biochemistry 32, 7048–7053 (1993).

    CAS  PubMed  Google Scholar 

  14. Serrano, L., Sancho, J., Hirshberg, J.M. & Fersht, A.R. α-Helix stability in proteins. I. Empirical correlations concerning substitution of side chains at the N- and C-caps and the replacement of alanine by glicine or serine at solvent -exposed surfaces. J. molec. Biol. 227, 544–549 (1992).

    CAS  PubMed  Google Scholar 

  15. Serrano, L. & Fersht, A.R. Capping and alpha-helix stability. Nature 342, 296–299 (1989).

    CAS  PubMed  Google Scholar 

  16. Nicholson, H., Anderson, D.E., Dao-Pin, S. & Matthews, B.W. Analysis of the interaction between charged side chains and the α-helix dipole using designed thermostable mutants of phage T4 lysozyme. Biochemistry 30, 981–9828 (1991).

    Google Scholar 

  17. Bell, J.A., Becktel, W.J., Sauer, U., Baase, W.A. & Matthews, B.W. Dissection of helix capping in T4 Lysozyme by structural and thermodynamical analysis of six aminoacid substitutions at Thr59. Biochemistry 31, 3590–3596 (1992).

    CAS  PubMed  Google Scholar 

  18. Sancho, S., Serrano, L. & Fersht, A.R., Histidine Residues at the N- and C-termini of α-Helices: Perturbed pKas and Protein Stability. Biochemistry 31, 2253–2258 (1992).

    CAS  PubMed  Google Scholar 

  19. Horovitz, A., Matthews, J. & Fersht, A.R. Alpha-helix stability in proteins. II. Factors that influence stability at an internal position. J. molec. Biol. 227, 560–568 (1992).

    CAS  PubMed  Google Scholar 

  20. Blaber, M., Zang, X. & Matthews, B. Structural basis of amino acid α helix propensity. Science 260, 1637–1640 (1993).

    CAS  PubMed  Google Scholar 

  21. Jimenez, M.A., Nieto, J.L., Herranz, J., Rico, M. & Santoro, J. 1H NMR and CD evidence of the folding of the isolated ribonuclease 50-61 fragment. FEBS Lett. 221, 320 (1987).

    CAS  PubMed  Google Scholar 

  22. Jimenez, M.A., Rico, M., Herranz, J., Santoro, J. & Nieto, J.L. 1H-NMR assignment and folding of the isolated ribonuclease 21-42 fragment. Eur. J. Biochem. 175, 101–109 (1988).

    CAS  PubMed  Google Scholar 

  23. Goodman, E.M. & Kim, P.S. Folding of a peptide corresponding to α-helix in bovine pancreatic typsin inhibitor. Biochemistry 28, 4333–4337 (1989).

    Google Scholar 

  24. Peña, M.C., Rico, M., Jimenez, M.A., Herranz, J., Santoro, J. & Nieto, J.L. Conformational properties of the isolated 1-23 fragment of human hemoglobin α-chain. Biochem. biophys. Acta. 957, 380–389 (1989).

    Google Scholar 

  25. Dyson, H.J., Merutka, G., Waltho, J.P., Lerner, R.A. & Wright, P.E. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. I Myohemerythrin. J. molec. Biol. 226, 795–817 (1992).

    CAS  PubMed  Google Scholar 

  26. Dyson, H.J., Merutka, G., Waltho, J.P., Lerner, R.A. & Wright, P.E. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. II Plastocyanin. J. molec. Biol. 226, 817–835 (1992).

    Google Scholar 

  27. Blanco, F.J., Jimenez, M.A., Rico, M., Santoro, J., Herranz, J. & Nieto, J.L. The homologous angiogenin and ribonuclease N-terminal fragments fold into very similar helices when isolated. Biochem. biophys. res. Commun. 182, 1491–1498 (1992).

    CAS  PubMed  Google Scholar 

  28. Brown, J.E. & Klee, W.A. Helix-coil transition of the isolated amino terminus of ribonuclease. Biochemistry 10, 470–476 (1971).

    CAS  PubMed  Google Scholar 

  29. Jimenez, M.A. et al. CD and 1H-NMR studies on the conformational properties of peptide fragments from the C-terminal domain of thermolysin. Euro. J. Biochem. 211, 569–581 (1993).

    CAS  Google Scholar 

  30. Shin, H.C., Merutka, G., Waltho, J.P., Wright, P.E. & Dyson, H.J. Peptide models of protein folding initiation sites. 2. The G-H turn region of myoglobin act as a helix stop signal. Biochemistry 32, 6348–6355 (1993).

    CAS  PubMed  Google Scholar 

  31. Shin, H.C., Merutka, G., Waltho, J.P., Tennant, L.L., Dyson, H.J. & Wright, P.E. Peptide models of protein folding initiation sites. 3. The G-H helical hairpin of myoglobin. Biochemistry 32, 6356–6364 (1993).

    CAS  PubMed  Google Scholar 

  32. Precheur, B., Siffert, O., Barzu, O. & Craescu, C.T. NMR and circular dichroic studies on the solution conformation of a synthetic peptide derived from the calmodulin-binding domain of Bordetella pertussis adenylate cyclase. Euro. J. Biochem. 196, 67–72 (1991).

    CAS  Google Scholar 

  33. Mammi, S., Foffani, M.T., Improta, S., Tessari, M., Schierano, E. & Peggion, E. Conformation of uteroglobin fragments. Biopolymers 32, 341 (1992).

    CAS  PubMed  Google Scholar 

  34. Sancho, J., Neira, J.L. & Ferhst, A.R., An N-terminal fragment of Barnase has residual structure similar to that in a refolding intermediate. J. molec. Biol. 224, 749–758. (1992).

    CAS  PubMed  Google Scholar 

  35. Cushman, J.A., Mishra, P.K., Bothner, A.A. & Khosla, M.S. Conformations in solution of angiotensin II, and its 1-7 and 1-6 fragments. Biopolymers 32, 1163–1171 (1992).

    CAS  PubMed  Google Scholar 

  36. Kuroda, Y. Residual helical structure in the C-terminal fragment of cytochrome C. Biochemistry 32, 1219–1224 (1993).

    CAS  PubMed  Google Scholar 

  37. Yumoto, N., Murase, S., Hattori, T., Yamamoto, H., Tatsu, Y. & Yoshikawa, S. Stabilization of α-helix in C-terminal fragments of neuropeptide Y. Biochem. biophys. res. Comm. 196, 1490–1495 (1993).

    CAS  PubMed  Google Scholar 

  38. Doughty, M.B. & Hu, L. The contribution of helical potential to the in vitro receptor binding activity of a neuropeptide Y N-terminal deletion fragment. Biopolymers 33, 1201–1206 (1993).

    Google Scholar 

  39. Kemmink, J. & Creighton, T.E. Conformations of peptides representing the entire sequence of bovine pancreatic trypsin inhibitor (BPTI) and their roles in folding. J. molec. Biol. (in the press).

  40. Waltho, J.P., Feher, V.A., Merutka, G., Dyson, H.J. & Wright, P.E. Peptide models of protein folding initiation sites. 1. Secondary structure formation by peptides corresponding to the G- and H-helices of myoglobin. Biochemistry 32, 6337–6347 (1993).

    CAS  PubMed  Google Scholar 

  41. Munier, H. et al. Characterisation of a Synthetic Calmodulin-binding Peptide derived J. biol. Chem.. 268, 1695 (1993).

    CAS  PubMed  Google Scholar 

  42. Sonnichsen, F.D., Van Eyk, J.E., Hodges, R.S. & Sykes, B.D. Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide. Biochemistry 31, 8790–8798 (1992).

    CAS  PubMed  Google Scholar 

  43. Chakrabarty, B.D., Doig, A.J. & Baldwin, R.L., Helix N-cap propensities in peptides parallel those found in proteins. Proc. natn. Acad. Sci. U.S.A. (in the press).

  44. Mitchinson, C. & Baldwin, R.L. The design and production of semisynthetic ribonucleases with increased thermostability by incorporation of S-peptide analogs with enhanced helical stability. Proteins Struct. Func. Genet. 1, 23–33 (1986).

    CAS  Google Scholar 

  45. Schoemaker, K.R., Kim, P.S., York, E.J., Stewart, J.M. & Baldwin, R.L. Tests of the helix dipole model for stabilisation of α-helices Nature 326, 563–567 (1987).

    Google Scholar 

  46. Strehlow, K.G. & Baldwin, R.L. Effect of the substitution Ala-Gly at each of five residue positions in the C-peptide helix. Biochemistry 28, 2130–2133 (1989).

    CAS  PubMed  Google Scholar 

  47. Lyu, P.C., Marky, L.A. & Kallenbach, N.R. The role of ion pairs in α-helix stability: two new designed helical peptides. J. Am. chem. Soc. 111, 2733–2734. (1989).

    CAS  Google Scholar 

  48. Marqusee, S., Robbins, V.H. & Baldwin, R.L. Unusually stable helix formation in short alanine-based peptides. Proc. natn. Acad. Sci. U.S.A. 86, 5286–5290 (1989).

    CAS  Google Scholar 

  49. Fairman, R., Shoemaker, K.R., York, E.J., Stewart, J.M. & Baldwin, R.L. Further studies of the helix dipole model: Effects of a free α-NH3 + or α-COO group on helix stability. Proteins Struc. Func. Genet. 5, 1–7 (1989).

    CAS  Google Scholar 

  50. Merutka, G. & Stellwagen, E. Positional independence and additivity of amino acid replacements on helix stability in monomeric peptides. Biochemistry 29, 894–898 (1990).

    CAS  PubMed  Google Scholar 

  51. Merutka, G., Lipton, W., Shalongo, W., Park, S.H. & Stellwagen, E. Effect of central-residue replacements on the helical stability of a monomeric peptide. Biochemistry 29, 7511–7515 (1990).

    CAS  PubMed  Google Scholar 

  52. Lyu, P.C., Liff, M.I., Marky, L.A. & Kallenbach, N.R. Side chain contributions to the stability of alpha-helical structures in peptides. Science 250, 669–673 (1990).

    CAS  PubMed  Google Scholar 

  53. Padmanabhan, S., Marqusee, S., Ridgeway, T., Laue, T.M., Baldwin, R.L. Relative helix-forming tendencies of nonpolar amino acids. Nature 344, 268–270 (1990).

    CAS  PubMed  Google Scholar 

  54. Shoemaker, R.K. et al. Side Chain interactions in the C-peptide Helix Phe8…His12. Biopolymers 29, 1 (1990).

    CAS  PubMed  Google Scholar 

  55. Merutka, G. & Stellwagen, E. Effect of amino acid ion pairs on peptide helicity. Biochemistry 30, 1591–1594 (1991).

    CAS  PubMed  Google Scholar 

  56. Lyu, P.C., Wang, P.C., Liff, M.I. & Kallenbach, N.R. Local effect of glycine substitution in a model helical peptide. J Am. chem. Soc. 113, 3568–3572 (1991).

    CAS  Google Scholar 

  57. Padmanabhan, S. & Baldwin, R.L. Straight-chain non-polar amino acids are good helix-formers in water. J. molec. Biol. 219, 135–137 (1991).

    CAS  PubMed  Google Scholar 

  58. Strehlow, K.G., Robertson, A.D. & Baldwin, R.L. Proline for alanine substitutions in the C-peptide helix of ribonuclease A. Biochemistry 30, 5810–5814 (1991).

    CAS  PubMed  Google Scholar 

  59. Scholtz, M., Qian, H., York, E.J., Stewart, J.M. & Baldwin, R.L. Parameters of helix-coil transition theory for alanine-based peptides of varying chain lengths in water. Biopolymers 31, 1463–1470 (1991).

    CAS  PubMed  Google Scholar 

  60. Chakrabartty, A., Schellman, J.A. & Baldwin, R.L. Large differences in the helix propensities of alanine and glycine. Nature 351, 586–588 (1991).

    CAS  PubMed  Google Scholar 

  61. Lyu, P.C., Zhou, H.X., Jelveh, N., Wemmer, D.E. & Kallenbach, N.R. Position-dependent stabilizing effects in α-helices: N-terminal capping in synthetic model peptides. J. Am. chem. Soc. 114, 6560–6562 (1992).

    CAS  Google Scholar 

  62. Stellwagen, E., Park, S., Shalongo, W. & Jain, A. The contribution of residue ion pairs to the helical stability of a model peptide. Biopolymers 32, 1193–1200 (1992).

    CAS  PubMed  Google Scholar 

  63. Lyu, P.C., Wemmer, D.E., Hongxing, X.Z., Pinker, R.J. & Kallenbach, N.R. Capping interactions in isolated α helices: Position-dependent substitution effects and structure of a Serine-capped peptide helix. Biochemistry 32, 421–425. (1993).

    CAS  PubMed  Google Scholar 

  64. Huygues-Despointes, B.M.P., Scholtz, J.M. & Baldwin, R.L. Effect of a single aspartate on helix stability at different positions in a neutral alanine-based peptide. Prot. Sci. 2, 1604–1611 (1993).

    Google Scholar 

  65. Huyghues-Despointes, B.M.P., Scholtz, J.M. & Baldwin, R.L. Helical peptides with three pairs of Asp-Arg and Glu-Arg residues in different orientations and spacings. Prot. Sci. 2, 80–85 (1993).

    CAS  Google Scholar 

  66. Venkatachallapathi, Y.V. et al. Effect of end group blockage on the properties of a class A amphipathic helical peptide. Proteins Struct. Func. Genet. 15, 349–359 (1993).

    Google Scholar 

  67. Forood, B., Feliciano, E.J. & Nambiar, K.P. Stabilization of α-helical structures in short peptides via end capping. Proc. natn. Acad. Sci. U.S.A. 90, 838–842 (1993).

    CAS  Google Scholar 

  68. Chakrabartty, A., Kortemme, T., Padmanabhan, S. & Baldwin, R.L. Aromatic side-chain contribution to far-ultraviolet circular dichroism of helical peptides and its effect on measurement of helix propensities. Biochemistry 32, 5560–5565. (1993).

    CAS  PubMed  Google Scholar 

  69. Zhou, N.E., Kay, C.M., Sykes, B.D., Hodges, R.S. A single-stranded amphipatic α-helix in aqueous solution: design, structural characterisation, and its application for determining α-helical propensities of amino acids. Biochemistry 32, 6190–6197 (1993).

    CAS  PubMed  Google Scholar 

  70. Fairman, R., Armstrong, K.M., Shoemaker, K.R., York, E.J., Stewart, J.M. & Baldwin, R.L. Position effect on apparent helical propensities in the C-peptide helix. J. molec. Biol. 221, 1395–1401 (1991).

    CAS  PubMed  Google Scholar 

  71. Scholtz, J.M., York, E.J., Stewart, J.M. & Baldwin, R.L. A Neutral water-soluble, α-helical peptide: The effect of ionic strength on the helix-coil equilibrium. J. Am. chem. Soc. 113, 5102 (1991).

    CAS  Google Scholar 

  72. Flory, P.J. Statistical mechanics of chain molecules (Hansen Publishers, 1989).

    Google Scholar 

  73. O'Neil, K.T. & DeGrado, W.F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250, 646–650 (1990).

    CAS  PubMed  Google Scholar 

  74. Scholtz, J.M., Marqusee, S., Baldwin, R.L., York, E.J., Stewart, J.M., Santoro, M., Bolen, D.W. Calorimetric determination of the enthalpy change for the α-helix to coil transition of an alanine peptide in water. Proc. natn. Acad. Sci. U.S.A. 88, 2854–2858 (1991).

    CAS  Google Scholar 

  75. Ooi, T. & Obatake, M. Prediction of the thermodynamics of protein unfolding: the helix-coil transition of poly(L-alanine). Proc. natn. Acad. Sci. U.S.A. 88, 2859–2863 (1991).

    CAS  Google Scholar 

  76. Sippl, M. Calculation of conformation ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J. molec. Biol. 213, 859–883. (1990).

    CAS  PubMed  Google Scholar 

  77. Rooman, M.J., Koger, J.P.A. & Wodak, S.J. Extracting information on folding from the aminoacid sequence: accurate predictions for protein regions with preferred conformations in the absence of tertiary interactions. Biochemistry 31, 10226–10238 (1992).

    CAS  PubMed  Google Scholar 

  78. Richardson, J.S. & Richardson, D.C. Amino acid preferences for specific locations at the ends of α helices. Science 240, 1648–1652 (1988).

    CAS  PubMed  Google Scholar 

  79. Dasgupta, S. & Bell, J.A. Design of helix ends. Int. J. peptide protein Res. 41, 499–511 (1993).

    CAS  Google Scholar 

  80. Harper, E.T. & Rose, G.D. Helix stop signals in proteins and peptides: the capping box. Biochemistry 32, 7605–7609 (1993).

    CAS  PubMed  Google Scholar 

  81. Chen, Y.H., Yang, J.T. & Chau, K.H. Determination of the helix and β-form of proteins in aqueous solution by circular dichroism. Biochemistry 13, 3350–3359 (1974).

    CAS  PubMed  Google Scholar 

  82. Storrs, R.W., Truckses, D. & Wemmer, D.E. Helix propagation in trifluoroethanol solutions. Biopolymers 32, 1695–1702 (1992).

    CAS  PubMed  Google Scholar 

  83. Jimenez, M.A., Blanco, F.J., Rico, M., Santoro, J., Herranz, J. & Nieto, J.L. Periodic properties of proton conformational shifts in isolated protein helices. Eur. J. Biochem. 207, 39–71 (1992).

    CAS  PubMed  Google Scholar 

  84. Vijay-Kumar, S., Bugg, C.E. & Cook, W.J. Structure of Ubiquitin refined at 1.8 Å resolution. J. molec. Biol. 194, 531–544 (1987).

    CAS  PubMed  Google Scholar 

  85. Stock, J.B., Stock, A.M. & Mottonen, J.M. Signal transduction in bacteria. Nature 344, 395–400 (1990).

    CAS  PubMed  Google Scholar 

  86. Blanco, F.J. “Papel de los giros β en el plegamiento de proteinas: estudio por resonancia magnetica nuclear”. Universidad Complutense de Madrid. PhD dissertation. (1992).

  87. Ogawa, K. et al. X-ray analysis of fereedoxin from S. platensis . 84, 1645–1652 (1978).

  88. Weaber, L.H. & Matthews, B.W. Structure of bacteriophage T4 lysozyme refined at 1.7 Å resolution. J. molec. Biol. 193, 189 (1987).

    Google Scholar 

  89. Valencia, A., Chardin, P., Wittinghofer, A. & Sander, C. The ras protein family: evoultionary tree and role of conserved amino acids. Biochemistry 30, 4637–4648 (1991).

    CAS  PubMed  Google Scholar 

  90. Gronenborg et al. A novel, highly stable fold of the Immunoglobulin binding domain of Streptococcal protein G. Science 253, 657–661 (1991).

    Google Scholar 

  91. Wutrich, K. NMR of proteins and nucleic acids (Wiley-lnterscience, 1986).

    Google Scholar 

  92. Rohl, C.A., Scholtz, J.M., York, E.J., Stewart, J.M. & Baldwin, R.L. Kinetics of proton exchange in helical peptides of varying chain lengths: interpretation by the Lifson-Roig equation. Biochemistry 31, 1263–1269 (1992).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz, V., Serrano, L. Elucidating the folding problem of helical peptides using empirical parameters. Nat Struct Mol Biol 1, 399–409 (1994). https://doi.org/10.1038/nsb0694-399

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0694-399

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing