Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solution structure of a cysteine rich domain of rat protein kinase C

Abstract

Intracellular protein phosphorylation by protein kinase C (PKC) plays a major role in the translation of extracellular signals into cellular events. Speculations on the structural basis for PKC activation are based on sequence homology between their cysteine-rich domains (CRD) and the DNA-binding ‘zinc-fingers’. We produced a fragment comprising the second CRD (CRD2) of rat PKC-α and determined its three-dimensional structure in solution by NMR spectroscopy. This revealed that CRD2 adopts a globular fold allowing two non-consecutive sets of zinc-binding residues to form two separate metal-binding sites. The fold is different to those previously proposed and allows insight into the molecular topology of a family of homologous proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hug, H. & Sarre, T.F. Protein kinase C isoenzymes: divergence in signal transaction? Biochem. J. 291, 329–343 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nishizuka, Y. The molcular heterogeneity of protein kinase C and its implications for cellular regulation. Science 258, 607–614 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Stabel, S. & Parker, P.J. Protein kinase C. Pharmac. Ther. 51, 71–95 (1991).

    Article  CAS  Google Scholar 

  4. Berg, J.M. Zinc fingers and other metal-binding domains. J. Biol. Chem. 265, 6513–6516 (1990).

    CAS  PubMed  Google Scholar 

  5. Bell, R.M. & Burns, D.J. Lipid activation of protein kinase C. J. biol. Chem. 266, 4661–4664 (1991).

    CAS  PubMed  Google Scholar 

  6. Campbell, I.D. & Baron, M. The structure and function of protein modules. Phil. Trans. Royal Soc. Lond. B 332, 165–170 (1991).

    Google Scholar 

  7. Burns, D.J. & Bell, R.M. Protein kinase C contains two phorbol ester binding domains. J. biol. Chem 266, 18330–18338 (1991).

    CAS  PubMed  Google Scholar 

  8. Quest, A.F.G., Bardes, E.S.G. & Bell, R.M. A phorbol ester binding domain of protein kinase C. J. biol. Chem. 269, 2961–2970 (1994).

    CAS  PubMed  Google Scholar 

  9. Wüthrich, K. Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science 243, 45–50 (1989).

    Article  PubMed  Google Scholar 

  10. Clore, G.M. & Gronenborn, A.M. Determination of three-dimensional structures of proteins and nucleic acids in solution by nuclear magnetic resonance spectroscopy. Crit. Rev. Biochem. molec. Biol. 24, 479–564 (1989).

    Article  CAS  Google Scholar 

  11. Hubbard, S.R., Bishop, W.R., Kirschmeier, P., George, S.J., Cramer, S.P. & Hendrickson, W.A. Identification and characterization of zinc binding sites in protein kinase C. Science 254, 1776–1779 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Nilges, M. X-PLOR Manual V3.0 Brunger, A.T. (Yale University, New Haven, CT, 1992).

    Google Scholar 

  13. Kraulis, P.J., Raine, A.R.C., Gadhavi, P.L. & Laue, E.D. Structure of the DNA-binding domain of zinc GAL4. Nature 356, 448–450 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Härd, T. et al. Solution structure of the glucocorticoid receptor DNA-binding domain. Science 249, 157–160 (1990).

    Article  PubMed  Google Scholar 

  15. Schwabe, J.W.R., Neuhaus, D. & Rhodes, D. Solution structure of the DNA-binding domain of the oestrogen receptor. Nature 348, 458–461 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, M.S., Gippert, G.P., Soman, K.V., Case, D.A. & Wright, P.E. Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science 245, 635–637 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Ahmed, S., Kozma, R., Lee, J., Monfries, C., Harden, N. & Lim, L. The cysteine-rich domain of human proteins, neuronal chimaerin, protein kinase C and diacylglycerol kinase binds zinc. Biochem. J. 280, 233–241 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ono, Y. et al. Phorbol ester binding to protein kinase C requires a cysteine-rich zinc-finger-like sequence. Proc. natn Acad. Sci. U.S.A. 86, 4868–4871 (1989).

    Article  CAS  Google Scholar 

  19. Marion, D. & Wüthrich, K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem. biophys. Res. Commun. 113, 967–974 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. Plateau, P. & Guéron, M. Exchangeable proton N.M.R. without baseline distortion, using new strong-pulse sequences. J. Am. chem. Soc. 104, 7310–7311 (1982).

    Article  CAS  Google Scholar 

  21. Bax, A., Sklenar, V., Clore, G.M. & Groneborn, A.M. Water suppression in two-dimensional spin-locked nuclear magnetic resonance experiments using a novel phase-cycling procedure. J. Am. chem. Soc. 109, 6511–6513 (1987).

    Article  CAS  Google Scholar 

  22. Macura, S., Huang, Y., Suter, D., & Ernst, R.R. (1981). Two-dimensional chemical exchange and cross-relaxation spectroscopy of coupled nuclear spins. J. magn. Reson. 43, 259–281 (1981).

    CAS  Google Scholar 

  23. Davis, D.G. & Bax, A. Assignment of complex 1H n.m.r. spectra via two-dimensional homonuclear Hartmann-Hahn spectroscopy. J. Am. chem. Soc. 107, 2820–2821 (1985).

    Article  CAS  Google Scholar 

  24. Kay, L.E. & Bax, A. (1990) New methods for the measurement of NH-CαH coupling constants in 15N-labelled proteins. J. magn. Reson. 86, 110–126 (1990).

    CAS  Google Scholar 

  25. Griesinger, C., Sorensen, O.W. & Ernst, R.R. Practical aspects of the E.COSY technique. Measurement of scalar spin-spin coupling constants in peptides. J. magn. Reson. 75, 474–492 (1987).

    CAS  Google Scholar 

  26. Messerle, B.A., Wider, G., Otting, G., Weber, C. & Wüthrich, K. Solvent suppression using a spin lock in 2D and 3D NMR spectroscopy with H2O solutions. J. magn. Reson. 85, 608–613 (1989).

    CAS  Google Scholar 

  27. Marion, D., Ikura, M. & Bax, A. Involved solvent suppression in one-and two-dimensional n.m.r. spectra by convolution of time-domain data. J. magn. Reson. 84, 425–430 (1989).

    CAS  Google Scholar 

  28. Nilges, M., Clore, G.M. & Gronenborn, A.M. 1H-N.M.R. stereospecific assignments by conformational data-base searches. Biopolymers 29, 813–822 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Sakana, F., Yamada, K., Kanoh, H., Yokoyama, C. & Tanabe, T. Porcine diacylglycerol kinase sequence has zinc finger and E-F hand motifs. Nature 344, 345–348 (1990).

    Article  Google Scholar 

  30. Levin, D., Field, O., Kunisawa, R., Bishop, J.M. & Thorner, J. A candidate protein kinase C gene, PKC1 is requiered for the S. cerevisiae cell cycle. Cell 62, 213–224 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Rosenthal, A., Rhee, L., Yadegari, R., Paro, R., Ullrich, A. & Goeddel, D.V. Structure and nucleotide sequence of a Drosophila melanogaster protein kinase C gene. EMBO J. 6, 433–441 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mayurama, I.N. & Brenner, S. A phorbol ester/diacylglycerol-binding protein encoded by the unc-13 gene of Caenorhabditis elegans . Proc. natn Acad. Sci. U.S.A. 88, 5729–5733 (1991).

    Article  Google Scholar 

  33. Beck, T.W., Huleihel, M., Gunnell, M., Bonner, T.I. & Rapp, U.R. The complete coding sequence of the human A-raf-1 oncogene and transforming activity of a human A-raf carrying retrovirus. Nucleic Acid Res. 15, 595–609 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Katzav, S., Martin-Zanca, D. & Barbacid, M. vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoietic cells. EMBO J. 8, 2283–2290 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hall, C. et al. Novel human brain cDNA encoding a 34,000 Mrprotein n-chimaerin, related to both the regulatory domain of protein kinase C and BCR, the product of the Breakpoint cluster region gene. J. molec. Biol. 221, 11–16 (1990).

    Article  Google Scholar 

  36. Kikkawa, U. et al. The common structure and activities of four subspecies of rat brain protein kinase C family. FEBS Lett. 223, 212–216 (1987).

    Article  CAS  PubMed  Google Scholar 

  37. Kraulis, P.J.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hommel, U., Zurini, M. & Luyten, M. Solution structure of a cysteine rich domain of rat protein kinase C. Nat Struct Mol Biol 1, 383–387 (1994). https://doi.org/10.1038/nsb0694-383

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0694-383

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing