Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A measure of helical propensity for amino acids in membrane environments

An Erratum to this article was published on 01 August 1994

Abstract

The frequent occurrence of β-sheet promoting residues such as Ile, Val, and Thr in the α-helical transmembrane segments of most integral membrane proteins suggests that the helical propensities of these residues are altered in the hydrophobic environment of the lipid bilayer. Systematic studies of peptides by circular dichroism models spectroscopy in various micellar/vesicular media allow the establishment of a ranking order of helical propensity for uncharged amino acids in the membrane environment. In contrast to their conformational preferences in water, the helical proclivity of amino acids in membranes is shown to be governed by their side chain hydrophobicity, and by the hydropathy of the local peptide segments in which the residues reside.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blaber, M., Zhang, X.-J. & Matthews, B.W. Structural basis of amino acid α-helix propensity. Science 260, 1637–1643 (1993).

    Article  CAS  Google Scholar 

  2. Padmanabhan, S., Marqusee, S., Ridgeway, T., Laue, T.M. & Baldwin, R.L. Relative helix-forming tendencies of nonpolar amino acids. Nature 344, 268–270 (1990).

    Article  CAS  Google Scholar 

  3. Lyu, P.C., Liff, M.I., Marky, L.A. & Kallenbach, N.R. Side chain contributions to the stability of α-helical structure in peptides. Science 250, 669–673 (1990).

    Article  CAS  Google Scholar 

  4. O'Neil, K.T. & DeGrado, W.F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250, 646–651 (1990).

    Article  CAS  Google Scholar 

  5. Chou, P.Y. & Fasman, G.D. Empirical predictions of protein conformation. A. Rev. Biochem. 47, 251–276 (1978).

    Article  CAS  Google Scholar 

  6. Kopito, R.R. & Lodish, H.F. Primary structure and transmembrane orientation of the murine anion exchange protein. Nature 316, 234–238 (1985).

    Article  CAS  Google Scholar 

  7. Popot, J.-L. & de Vitry, C. On the microassembly of integral membrane proteins. A. Rev. Biophys. biophys. Chem. 19, 369–403 (1990).

    Article  CAS  Google Scholar 

  8. Jennings, M.L. Topography of membrane proteins. A. Rev. Biochem. 58, 999–1027 (1989).

    Article  CAS  Google Scholar 

  9. Deber, C.M., Brandl, C.J., Deber, R.B., Hsu, L.C. & Young, X.K. Amino acid composition of the membrane and aqueous domains of integral membrane proteins. Arch. Biochem. Biophys. 251, 68–76 (1986).

    Article  CAS  Google Scholar 

  10. Landolt-Marticorena, C., Williams, K.A., Deber, C.M. & Reithmeier, R.A.F. Non-random distribution of amino acids in the transmembrane segments of human type I single span membrane proteins. J. molec. Biol. 229, 602–608 (1993).

    Article  CAS  Google Scholar 

  11. Li, S.-C. & Deber, C.M. Influence of glycine residues on peptide conformation in membrane environments. Int. J. peptide protein Res. 40, 243–248 (1992).

    Article  CAS  Google Scholar 

  12. Wallace, B.A., Cascio, M. & Mielke, D.L. Evaluation of methods for the prediction of membrane protein secondary structures. Proc. natn. Acad. Sci. U.S.A. 83, 9423–9427 (1986).

    Article  CAS  Google Scholar 

  13. Li, S.-C. & Deber, C.M. Peptide environment specifies conformation. Helicity of hydrophobic segments compared in aqueous, organic, and membrane environments. J. biol. Chem. 268, 22975–22978 (1993).

    CAS  PubMed  Google Scholar 

  14. Li, S.-C. & Deber, C.M. Glycine and β-branched residues support and modulate peptide helicity in membrane environments. FEBS Lett. 311, 217–220 (1992).

    Article  CAS  Google Scholar 

  15. Gasset, M. et al. Predicted α-helical regions of the prion protein when synthesized as peptides form amyloid. Proc. natn. Acad. Sci. U.S.A. 89, 10940–10944 (1992).

    Article  CAS  Google Scholar 

  16. van de Ven, F.J.M. et al. Assignment of 1H, 15N, and backbone 13C resonances in detergent-solubilized M13 coat protein via multinuclear multidimensional NMR: a model for the coat protein monomer. Biochemistry 32, 8322–8328 (1993).

    Article  CAS  Google Scholar 

  17. Hoyt, D.W. & Gierasch, L.M. Hydrophobic content and lipid interactions of wild-type and mutant OmpA signal peptides correlate with their in vivo function. Biochemistry 30, 10155–10163 (1991).

    Article  CAS  Google Scholar 

  18. Gordon, L.M., Curtain, C.C., Zhong, Y.C., Kirkpatrick, A., Mobley, P.W. & Waring, A.J. The amino-terminal peptide of HIV-1 glycoprotein 41 interacts with human erythrocyte membranes: peptide conformation, orientation and aggregation. Biochim. biophys. Acta 1139, 257–274 (1992).

    Article  CAS  Google Scholar 

  19. Roth, M., Lewit-Bentley, A., Michel, H., Deisenhofer, J., Huber, R. & Oesterhelt, D. Detergent structure in crystals of a bacterial photosynthetic reaction centre. Nature 340, 659–662 (1989).

    Article  CAS  Google Scholar 

  20. Barber, J. Detergent ringing true as a model for membranes. Nature 340, 601 (1989).

    Article  CAS  Google Scholar 

  21. Yang, J.T., Wu, C.-S.C. & Martinez, H.M. Calculation of protein conformation from circular dichroism. Meth. Enzymol. 130, 208–269 (1986).

    Article  CAS  Google Scholar 

  22. Park, K., Perczel, A. & Fasman, G.D. Differentiation between transmembrane helices and peripheral helices by the deconvolution of circular dichroism spectra of membrane proteins. Prot. Sci. 1, 1032–1049 (1992).

    Article  CAS  Google Scholar 

  23. Heinz, D.W., Baase, W.A. & Matthews, B.W. Folding and function of a T4 lysozyme containing 10 consecutive alanines illustrate the redundancy of information in an amino acid sequence. Proc. natn. Acad. Sci. U.S.A. 89, 3751–3755 (1992).

    Article  CAS  Google Scholar 

  24. Zhong, L. & Johnson, C., Jr. Environment affects amino acid preference for secondary structure. Proc. natn. Acad. Sci. U.S.A. 89, 4462–4465 (1992).

    Article  CAS  Google Scholar 

  25. Kyte, J. & Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. molec. Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

  26. Blaber, M., Zhang, X.-J. & Matthews, B.W. Alpha helix propensity of amino acids. Science 262, 917–918 (1993).

    Article  Google Scholar 

  27. Shortle, D. & Clarke, N. Alpha helix propensity of amino acids. Science 262, 917 (1993).

    Article  Google Scholar 

  28. Engelman, D.E., Steitz, T.A. & Goldman, A. Identifying nonpolar transmembrane helices in amino acid sequences of membrane proteins. A. Rev. Biophys. biophys. Chem. 15, 321–353 (1986).

    Article  CAS  Google Scholar 

  29. Alber, T. Stabilization energies of protein conformation. In Prediction of Protein Structure and the Principles of Protein Conformation (ed. Fasman, G. D.), 161–192 Plenum (1989).

    Chapter  Google Scholar 

  30. Kamtekar, S., Schiffer, J.M., Xiong, H., Babik, J.M. & Hecht, M.H. Protein design by binary patterning of polar and nonpolar amino acids. Science 262, 1680–1685 (1993).

    Article  CAS  Google Scholar 

  31. Wattenberger, M.R., Chan, H.S., Evans, D.F., Bloomfield, V.A. & Dill, K.A. Surface-induced enhancement of internal structure in polymers and proteins. J. chem. Phys. 93, 8343–8351 (1990).

    Article  Google Scholar 

  32. Chan, H.S., Wattenberger, M.R., Evans, D.F., Bloomfield, V.A. & Dill, K.A. Enhanced structure in polymers at interfaces. J. chem. Phys. 94, 8542–8557 (1991).

    Article  CAS  Google Scholar 

  33. Jacobs, R.E. & White, S.H. The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Biochemistry 28, 3421–3437 (1989).

    Article  CAS  Google Scholar 

  34. Engelman, D.M. & Steitz, T.A. The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell 23, 411–422 (1981).

    Article  CAS  Google Scholar 

  35. Kaiser, E.T. & Kezdy, F.J. Secondary structures of proteins and peptides in amphiphilic environments (A review). Proc. natn. Acad. Sci. U.S.A. 80, 1137–1143 (1983).

    Article  CAS  Google Scholar 

  36. Wiener, M. C. & White, S. H. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of X-ray and neutron diffraction data. III. Complete structure. Biophys. J. 61, 434–447 (1992).

    Article  CAS  Google Scholar 

  37. White, S.H. & Wimley, W.C. Peptides in lipid bilayers: structural and thermodynamic basis for partitioning and folding. Curr. Opin. struct. Biol. 4, 79–86 (1994).

    Article  CAS  Google Scholar 

  38. Atherton, E. & Sheppard, R.C. in Solid Phase Peptide Synthesis, A Practical Approach (eds. Rickwood, D. & Hames, B.D.), 131–148 (IRL Press, Oxford, U.K., 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, SC., Deber, C. A measure of helical propensity for amino acids in membrane environments. Nat Struct Mol Biol 1, 368–373 (1994). https://doi.org/10.1038/nsb0694-368

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0694-368

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing