Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conversion of the substrate specificity of mouse proteinase granzyme B

Abstract

Mouse granzyme B is the prototypic member of a subfamily of serine proteinases expressed in cytolytic lymphocytes. Molecular modelling of granzyme B indicated that the side chain of Arg 208 partially fills the specificity pocket, thus predicting the preference of this enzyme for substrates containing acidic side chains, a feature unique among eukaryotic serine proteinases. Replacement of Arg 208 with glycine results in an enzyme lacking this activity, but which is able to hydrolyze hydrophobic substrates. These results demonstrate unequivocally that the substrate preference of granzyme B is determined by a positive charge in the specificity pocket and also represent one of the few examples of rational and efficient alteration of serine proteinase substrate-specificity following a single amino acid substitution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lobe, C.G., Finlay, B.B., Paranchych, W., Paetkau, V.H. & Bleackley, R.C. Novel serine proteases encoded by two cytotoxic T lymphocyte-specific genes. Science 232, 858–861 (1986).

    Article  CAS  Google Scholar 

  2. Lobe, C.G., Havele, C. & Bleakley, R.C. Cloning of two genes that are specifically expressed in activated cytotoxic T lymphocytes. Proc. natn. Acad. Sci. U.S.A. 83, 1448–1452 (1986).

    Article  CAS  Google Scholar 

  3. Brunet, J.-F. et al. The inducible cytotoxicT-lymphocyte-associated gene transcript CTLA-1 sequence and gene localization to mouse chromosome 14. Nature 322, 268–271 (1986).

    Article  CAS  Google Scholar 

  4. Masson, D. & Tschopp, J. A family of serine esterases in lytic granules of cytolyticT lymphocytes. Cell 49, 679–685 (1987).

    Article  CAS  Google Scholar 

  5. Brunet, J.-F. et al. CTLA-1 and CTLA-3 serine esterase transcripts are detected mostly in cytotoxic T cells, but not only and not always. J. Immunol. 138, 4102–4105 (1987).

    CAS  PubMed  Google Scholar 

  6. Shi, L., Kraut, R.P., Aebersold, R. & Greenberg, A.H. A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J. exp. Med. 175, 553–566 (1992).

    Article  CAS  Google Scholar 

  7. Rawlings, N.D. & Barrett, A.J. Evolutionary families of peptidases Biochem. J. 290, 205–218 (1993).

    Article  CAS  Google Scholar 

  8. Schector, I. and Berger, A. On the size of the active site in proteases. I. Papain. Biochem. biophys. Res. Comm. 27, 157–162 (1967).

    Article  Google Scholar 

  9. Murphy, M.E.P. et al. Comparative molecular model building of two serine proteinases from cytotoxic T lymphocytes. Proteins Struct. Funct. Genet. 4, 190–204 (1988).

    Article  CAS  Google Scholar 

  10. Odake, S. et al. Human and murine cytotoxic T lymphocyte serine proteases: Subsite mapping with peptide thioester substrates and inhibition of enzyme activity and cytolysis by isocoumarins. Biochemistry 30, 2217–2227 (1991).

    Article  CAS  Google Scholar 

  11. Poe, M. et al. Human cytotoxic lymphocyte granzyme B. Its purification from granules and the characterization of substrate and inhibitor specificity. J. biol. Chem. 266, 98–103 (1991).

    CAS  PubMed  Google Scholar 

  12. Kakudo, S. et al. Purification, characterization, cloning and expression of glutamic acid-specific protease from Bacillus licheniformis ATCC 14580. J. biol. Chem. 267, 23782–23788 (1992).

    CAS  PubMed  Google Scholar 

  13. Howard, A.D. et al. IL-1 converting enzyme requires aspartic acid residues for processing of the IL-1β precursor at two distinct sites and does not cleave 31-kDa IL-1α. J. Immunol. 147, 2964–2969 (1991).

    CAS  PubMed  Google Scholar 

  14. Jenne, D.E. et al. Isolation and complete structure of the lymphocyte serine protease granzyme G, a novel member of the granzyme multigene family in murine cytolytic T lymphocytes. Evolutionary origin of lymphocyte proteases. Biochemistry 28, 7955–7961 (1989).

    Article  Google Scholar 

  15. Yoshida, N., Everitt, M.T., Neurath, H., Woodbury, R.G. & Powers, J.C. Substrate specificity of two chymotrypsin-like proteases from rat mast cells. Studies with peptide 4-nitroanilides and comparison with cathepsin G. Biochemistry 19, 5799–5804 (1980).

    Article  CAS  Google Scholar 

  16. Nakajima, K., Powers, J.C., Ashe, B.M. & Zimmerman, M. Mapping the extended substrate binding site of cathepsin G and human leukocyte elastase. Studies with peptide substrates related to the α1-protease inhibitor reactive site. J. biol. Chem. 254, 4027–4032 (1979).

    CAS  PubMed  Google Scholar 

  17. Caputo, A., Garner, R.S., Winkler, U., Hudig, D. & Bleackley, R.C. Activation of recombinant murine cytotoxic cell proteinase-1 requires deletion of an amino-terminal dipeptide. J. biol. Chem. 268, 17672–17675 (1993).

    CAS  Google Scholar 

  18. Delmar, E.G., Largman, C., Brodrick, J.W., Geokas, M.C. A sensitive new substrate for chymotrypsin. Anal. Biochem. 99, 316–320 (1979).

    Article  CAS  Google Scholar 

  19. Hedstrom, L., Svilagyi, L. and Rutter, W.J. Converting trypsin to chymotrypsin: the role of surface loops. Science 255, 1249–1253 (1992).

    Article  CAS  Google Scholar 

  20. Graf, L. et al. Electrostatic complementarity within the substrate-binding pocket of trypsin. Proc. natn. Acad. Sci. U.S.A. 85, 4961–4965 (1988).

    Article  CAS  Google Scholar 

  21. Henriksen, R.A. & Mann, K.G. Substitution of valine for glycine-558 in the congenital dysthrombin thrombin quick II alters primary substrate specificity. Biochemistry 28, 2078–2082 (1989).

    Article  CAS  Google Scholar 

  22. Craik, C.S. et al. Redesigning trypsin: alteration of substrate specificity. Science 228, 291–297 (1985).

    Article  CAS  Google Scholar 

  23. Perona, J.J., Tsu, C.A., McGrath, M.E., Craik, C.S. & Fletterick, R.J. Relocating a negative charge in the binding pocket of trypsin. J. molec. Biol. 230, 934–949 (1993).

    Article  CAS  Google Scholar 

  24. Kornberg, A. Meth. Enzymol. 182, 1–5 (1990).

    Article  CAS  Google Scholar 

  25. Nakamaye, K.L., & Eckstein, F. Inhibition or restriction endonuclease Nci I cleavage by phosphorothioate groups and its application to oligonudeotide-directed mutagenesis. Nucl. Acids Res. 14, 9679–9698 (1986).

    Article  CAS  Google Scholar 

  26. Bollag, D.M. & Edelstein, S.J. in Protein Methods (Wiley-Liss, New York, 1991).

    Google Scholar 

  27. Redmond, M.J. et al. A serine protease (CCP1) is sequestered in the cytoplasmic granules of cytotoxic T lymphocytes. J. Immunol. 139, 3184–3188 (1987).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caputo, A., James, M., Powers, J. et al. Conversion of the substrate specificity of mouse proteinase granzyme B. Nat Struct Mol Biol 1, 364–367 (1994). https://doi.org/10.1038/nsb0694-364

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0694-364

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing