Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stepwise formation of α-helices during cytochrome c folding

Abstract

Two models have been proposed to describe the folding pathways of proteins. The framework model assumes the initial formation of the secondary structures whereas the hydrophobic collapse model supposes their formation after the collapse of backbone structures. To differentiate between these models for real proteins, we have developed a novel CD spectrometer that enables us to observe the submillisecond time frame of protein folding and have characterized the timing of secondary structure formation in the folding process of cytochrome c (cyt c). We found that 20% of the native helical content was organized in the first phase of folding, which is completed within milliseconds. Furthermore, we suggest the presence of a second intermediate, which has α-helical content resembling that of the molten globule state. Our results indicate that many of the α-helices are organized after collapse in the folding mechanism of cyt c.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic drawing of the rapid solution mixer developed for the measurements of transient CD spectra.
Figure 2: The mixing profile of the developed rapid solution mixer.
Figure 3: Comparison of the CD spectra obtained using the developed mixer and a standard cell.
Figure 4: The time resolved CD spectra of the refolding process of cyt c initiated by a rapid jump in pH from 2.0 to 4.5.
Figure 5: CD spectra of intermediate I observed under different experimental conditions.
Figure 6: The time courses of the mean residue ellipticity observed at 222 nm (θ222) for the refolding experiments of cyt c conducted under different conditions.
Figure 7

Similar content being viewed by others

References

  1. Anfinsen, C.B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    Article  CAS  PubMed  Google Scholar 

  2. Levinthal, C. Are there pathways for protein folding? J. Chim. Phys. 65, 44–45 (1968).

    Article  Google Scholar 

  3. Dill, K.A. & Chan, H.S. From Levinthal to pathways to funnels. Nature Struct. Biol. 4, 10–19 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Baldwin, R.L. & Rose, G.D. Is protein folding hierarchic? I. Local structure and peptide folding. Trends Biochem. Sci. 24, 26–33 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Baldwin, R.L. & Rose, G.D. Is protein folding hierarchic? II. Folding intermediates and transition states. Trends Biochem. Sci. 24, 77–83 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Kim, P.S. & Baldwin, R.L. Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Annu. Rev. Biochem. 51, 459–489 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. Dill, K.A. Theory for the folding and stability of globular proteins. Biochemistry 24, 1501–1509 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. Sivaraman, T. et al. Secondary structure formation is the earliest structural event in the refolding of an all β-sheet protein. Biochem. Biophys. Res. Commun. 260, 284–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Agashe, V.R., Shastry, M.C. & Udgaonkar, J.B. Initial hydrophobic collapse in the folding of barstar. Nature 377, 754–757 (1995).

    Article  Google Scholar 

  10. Sosnick, T.R., Mayne, L., Hiller, R. & Englander, S.W. The barriers in protein folding. Nature Struct. Biol. 1, 149–156 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Jennings, P.A. & Wright, P.E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science 262, 892–896 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Chaffotte, A.F., Guillou, Y. & Goldberg, M.E. Kinetic resolution of peptide bond and side chain far-UV circular dichroism during the folding of hen egg white lysozyme. Biochemistry 31, 9694–9702 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Ptitsyn, O.B. Molten globule and protein folding. Adv. Protein Chem. 47, 83–229 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Kuwajima, K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins 6, 87–103 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Shastry, M.C., Luck, S.D. & Roder, H. A continuous-flow capillary mixing method to monitor reactions on the microsecond time scale. Biophys. J. 74, 2714–2721 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Takahashi, S. et al. Folding of cytochrome c initiated by submillisecond mixing. Nature Struct. Biol. 4, 44–50 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Chan, C.K. et al. Submillisecond protein folding kinetics studied by ultrarapid mixing. Proc. Natl. Acad. Sci. USA 94, 1779–1784 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bushnell, G.W., Louie, G.V. & Brayer, G.D. High-resolution three-dimensional structure of horse heart cytochrome c. J. Mol. Biol. 214, 585–595 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Shastry, M.C.R. & Roder, H. Evidence for barrier-limited protein folding kinetics on the microsecond time scale. Nature Struct. Biol. 5, 385–392 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Pollack, L. et al. Compactness of the denatured state of a fast-folding protein measured by submillisecond small-angle X-ray scattering. Proc. Natl. Acad. Sci. USA 96, 10115–10117 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yeh, S.R., Takahashi, S., Fan, B. & Rousseau, D.L. Ligand exchange during cytochrome c folding. Nature Struct. Biol. 4, 51–56 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Sauder, J.M. & Roder, H. Amide protection in an early folding intermediate of cytochrome c. Folding Design 3, 293–301 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Elöve, G.A., Chaffotte, A.F., Roder, H. & Goldberg, M.E. Early steps in cytochrome c folding probed by time-resolved circular dichroism and fluorescence spectroscopy. Biochemistry 31, 6876–6883 (1992).

    Article  PubMed  Google Scholar 

  24. Chen, E., Wittung-Stafshede, P. & Kliger, D.S. Far-UV time-resolved circular dichroism detection of electron-transfer-triggered cytochrome c folding. J. Am. Chem. Soc. 121, 3811–3817 (1999).

    Article  CAS  Google Scholar 

  25. Takahashi, S., Akiyama, S., Ishimori, K. & Morishima, I. CD measurements on the early folding intermediate of cytochrome c using the fast flow mixer. In Old and new views of protein folding (eds Kuwajima, K. & Arai, M.) 75–84 (Elsevier Science, Amsterdam; 1999).

  26. Greenfield, N. & Fasman, G.D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8, 4108–4116 (1969).

    Article  CAS  PubMed  Google Scholar 

  27. Yeh, S.R., Han, S. & Rousseau, D.L. Cytochrome c folding and unfolding: a biphasic mechanism. Acc. Chem. Res. 31, 727–736 (1998).

    Article  CAS  Google Scholar 

  28. Goldbeck, R.A. & Kliger, D.S. Nanosecond time-resolved absorption and polarization dichroism spectroscopies. Methods Enzymol. 226, 147–177 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Shastry, M.C.R., Sauder, J.M. & Roder, H. Kinetic and structural analysis of submillisecond folding events in cytochrome c. Acc. Chem. Res. 31, 717–725 (1998).

    Article  CAS  Google Scholar 

  30. Sosnick, T.R., Shtilerman, M.D., Mayne, L. & Englander, S.W. Ultrafast signals in protein folding and the polypeptide contracted state. Proc. Natl. Acad. Sci. USA 94, 8545–8550 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mok, Y.K., Kay, C.M., Kay, L.E. & Forman-Kay, J. NOE data demonstrating a compact unfolded state for an SH3 domain under non-denaturing conditions. J. Mol. Biol. 289, 619–638 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Lecomte, J.T. & Falzone, C.J. Where U and I meet. Nature Struct. Biol. 6, 605–608 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Yeh, S.R. & Rousseau, D.L. Folding intermediates in cytochrome c. Nature Struct. Biol. 5, 222–228 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Colón, W., Wakem, L.P., Sherman, F. & Roder, H. Identification of the predominant non-native histidine ligand in unfolded cytochrome c. Biochemistry 36, 12535–12541 (1997).

    Article  PubMed  Google Scholar 

  35. Fersht, A. Kinetics of protein folding. In Structure and mechanism in protein science (Julet, M.R. and Hadler G.L., eds) 540–572 (W.H. Freeman and Company, New York; 1998).

  36. Roder, H., Elöve, G.A. & Englander, S.W. Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature 335, 700–704 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Colón, W. & Roder, H. Kinetic intermediates in the formation of the cytochrome c molten globule. Nature Struct. Biol. 3, 1019–1025 (1996).

    Article  PubMed  Google Scholar 

  38. Elöve, G.A., Bhuyan, A.K. & Roder, H. Kinetic mechanism of cytochrome c folding: involvement of the heme and its ligands. Biochemistry 33, 6925–6935 (1994).

    Article  PubMed  Google Scholar 

  39. Ohgushi, M. & Wada, A. ‘Molten-globule state’: a compact form of globular proteins with mobile side-chains. FEBS Lett. 164, 21–24 (1983).

    Article  CAS  PubMed  Google Scholar 

  40. Kuroda, Y., Endo, S., Nagayama, K. & Wada, A. Stability of α-helices in a molten globule state of cytochrome c by hydrogen-deuterium exchange and two-dimensional NMR spectroscopy. J. Mol. Biol. 247, 682–688 (1995).

    CAS  PubMed  Google Scholar 

  41. Jeng, M.F., Englander, S.W., Elöve, G.A., Wand, A.J. & Roder, H. Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR. Biochemistry 29, 10433–10437 (1990).

    Article  Google Scholar 

  42. Dill, K.A. Dominant forces in protein folding. Biochemistry 29, 7133–7155 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Yee, D.P., Chan, H.S., Havel, T.F. & Dill, K.A. Does compactness induce secondary structure in proteins? A study of poly-alanine chains computed by distance geometry. J. Mol. Biol. 241, 557–573 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Marmorino, J.L. & Pielak, G.J. A native tertiary interaction stabilizes the A state of cytochrome c. Biochemistry 34, 3140–3143 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Marmorino, J.L., Lehti, M. & Pielak, G.J. Native tertiary structure in an A-state. J. Mol. Biol. 275, 379–388 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Kuroda, Y. Residual helical structure in the C-terminal fragment of cytochrome c. Biochemistry 32, 1219–1224 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Bai, Y., Sosnick, T.R., Mayne, L. & Englander, S.W. Protein folding intermediates: native-state hydrogen exchange. Science 269, 192–197 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Uversky, V.N. & Ptitsyn, O.B. ‘Partly folded’ state, a new equilibrium state of protein molecules: four-state guanidinium chloride-induced unfolding of β-lactamase at low temperature. Biochemistry 33, 2782–2791 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by Grants-in-Aids for Scientific Research from the Ministry of Education, Science, Sports and Culture to S.T., K.I. and I.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isao Morishima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akiyama, S., Takahashi, S., Ishimori, K. et al. Stepwise formation of α-helices during cytochrome c folding. Nat Struct Mol Biol 7, 514–520 (2000). https://doi.org/10.1038/75932

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75932

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing