Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the arginine repressor from Bacillus stearothermophilus

Abstract

The arginine repressor (ArgR) is a hexameric DNA-binding protein that plays a multifunctional role in the bacterial cell. Here, we present the 2.5 Å structure of apo-ArgR from Bacillus stearothermophilus and the 2.2 Å structure of the hexameric ArgR oligomerization domain with bound arginine. This first view of intact ArgR reveals an approximately 32-symmetric hexamer of identical subunits, with six DNA-binding domains surrounding a central oligomeric core. The difference in quaternary organization of subunits in the arginine-bound and apo forms provides a possible explanation for poor operator binding by apo-ArgR and for high affinity binding in the presence of arginine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Aligned sequences of the arginine repressors from E. coli5, H. influenzae9, M. tuberculosis 10, S. clavuligerus11, B. subtilis 6, and B. stearothermophilus8 (the first 11 residues of M. tuberculosis ArgR are not shown).
Figure 2: a, Ribbon drawing of the ArgRBst-C hexamer, viewed along the local threefold symmetry axis.
Figure 3: a, Ribbon drawing of apo-ArgRBst, viewed down the pseudo-three-fold axis of the hexamer.
Figure 4: a, Model of the apo-ArgRBst–DNA interaction.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Glansdorff, N. in Escherichia coli and Salmonella: cellular and molecular biology. (ed. Neidhardt, F.C.) 408–433 (American Society for Microbiology Press, Washington, D.C.; 1996).

    Google Scholar 

  2. Maas, W.K. Microbiol. Rev. 58, 631–640 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Czaplewski, L.G., North, A.K., Smith, M.C.M., Baumberg, S. & Stockley, P.G. Mol. Microbiol. 6 , 267–275 (1992).

    Article  CAS  Google Scholar 

  4. Stirling, C.J., Szatmari, G., Stewart, G., Smith, M.C. & Sherratt, D.J. EMBO J. 7, 4389–4395 (1988).

    Article  CAS  Google Scholar 

  5. Lim, D.B., Oppenheim, J.D., Eckhardt, T. & Maas, W.K. Proc. Natl. Acad. Sci. USA 84, 6697– 701 (1987).

    Article  CAS  Google Scholar 

  6. North, A.K., Smith, M.C. & Baumberg, S. Gene 80, 29– 38 (1989).

    Article  CAS  Google Scholar 

  7. Lu, C.D., Houghton, J.E. & Abdelal, A.T. J. Mol. Biol. 225, 11– 24 (1992).

    Article  CAS  Google Scholar 

  8. Dion, M. et al. Mol. Microbiol. 25, 385– 398 (1997).

    Article  CAS  Google Scholar 

  9. Fleischmann, R.D. et al. Science 269, 496–512 (1995).

    Article  CAS  Google Scholar 

  10. Cole, S.T. et al. Nature 393, 537–544 (1998).

    Article  CAS  Google Scholar 

  11. Rodríguez–García, A., Ludovice, M., Martín, J.F. & Liras, P. Mol. Microbiol. 25, 219– 228 (1997).

    Article  Google Scholar 

  12. Tian, G. & Maas, W.K. Mol. Microbiol. 13, 599–608 (1994).

    Article  CAS  Google Scholar 

  13. Burke, M., Merican, A.F. & Sherratt, D.J. Mol. Microbiol. 13, 609– 618 (1994).

    Article  CAS  Google Scholar 

  14. Van Duyne, G.D., Ghosh, S., Maas, W.K. & Sigler, P.B. J. Mol. Biol. 256, 377–391 ( 1996).

    Article  CAS  Google Scholar 

  15. Grandori, R. et al. J. Mol. Biol. 254, 150– 162 (1995).

    Article  CAS  Google Scholar 

  16. Chen, S.H., Merican, A.F. & Sherratt, D.J. Mol. Microbiol. 24, 1143– 1156 (1997).

    Article  CAS  Google Scholar 

  17. Sunnerhagen, M., Nilges, M., Otting, G. & Carey, J. Nature Struct. Biol. 4, 819–826 ( 1997).

    Article  CAS  Google Scholar 

  18. Brennen, R.G. Cell 74, 773–776 ( 1993).

    Article  Google Scholar 

  19. Tian, G., Lim, D., Oppenheim, J.D. & Maas, W.K. J. Mol. Biol. 235, 221–230 (1994).

    Article  CAS  Google Scholar 

  20. Wang, H., Glansdorff, N. & Charlier, D. J. Mol. Biol. 277, 805– 824 (1998).

    Article  CAS  Google Scholar 

  21. Tian, G., Lim, D., Carey, J. & Maas, W.K. J. Mol. Biol. 226, 387–397 (1992).

    Article  CAS  Google Scholar 

  22. Charlier, D. et al. J. Mol. Biol. 226, 367– 386 (1992).

    Article  CAS  Google Scholar 

  23. Schultz, S.C., Shields, G.C. & Steitz, T.A. Science 253, 1001– 1007 (1991).

    Article  CAS  Google Scholar 

  24. Miller, C.M., Baumberg, S. & Stockley, P.G. Mol. Microbiol. 26, 37– 48 (1997).

    Article  CAS  Google Scholar 

  25. Abrahams, J.P. & Leslie, A.G.W. Acta Crystallogr. D 52, 30–42 ( 1996).

    Article  CAS  Google Scholar 

  26. Navaza, J. Acta Crystallgr. A 50, 157–163 (1994).

    Article  Google Scholar 

  27. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 ( 1991).

    Article  Google Scholar 

  28. Otwinowski, Z. in CCP4 Proceedings. 80–88 (Daresbury Laboratory, Warrington, UK, 1991).

    Google Scholar 

  29. Jiang, J.S. & Brunger, A.T. J. Mol. Biol. 243, 100–115 (1994).

    Article  CAS  Google Scholar 

  30. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  31. Kraulis, P. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  32. Merritt, E.A. & Bacon, D.J. Methods Enzymol. 277 , 505–524 (1997).

    Article  CAS  Google Scholar 

  33. Carson, M. J. Appl. Crystallgr. 24, 958–961 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the staff of the CHESS F1 beamline for synchrotron support, F. Guo and M. Gopaul for assistance with data collection, and X. Li for help in crystallization. We also acknowledge helpful comments and discussions from M. Lemmon, H. Lu, H. Nelson, M. Lewis, and W.K. Maas. Supported by a grant from the National Institutes of Health to G.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory D. Van Duyne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, J., Sakanyan, V., Charlier, D. et al. Structure of the arginine repressor from Bacillus stearothermophilus . Nat Struct Mol Biol 6, 427–432 (1999). https://doi.org/10.1038/8229

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8229

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing