Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure and mechanism of glutamate racemase from Aquifex pyrophilus

Abstract

Glutamate racemase (MurI) is responsible for the synthesis of D-glutamate, an essential building block of the peptidoglycan layer in bacterial cell walls. The crystal structure of glutamate racemase from Aquifex pyrophilus, determined at 2.3 Å resolution, reveals that the enzyme forms a dimer and each monomer consists of two α/β fold domains, a unique structure that has not been observed in other racemases or members of an enolase superfamily. A substrate analog, D-glutamine, binds to the deep pocket formed by conserved residues from two monomers. The structural and mutational analyses allow us to propose a mechanism of metal cofactor-independent glutamate racemase in which two cysteine residues are involved in catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, A schematic ribbon diagram of the overall structure of a MurI monomer.
Figure 2: a, A stereo diagram showing the MurI dimer.
Figure 3: a, A 2Fo - Fc map showing the active-site region calculated at 2.3 Å resolution.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Bugg, T.D. & Walsh, C.T. Nat. Prod. Rep. 9, 199–215 (1992).

    Article  CAS  Google Scholar 

  2. Walsh, C.T. J. Biol. Chem. 264, 2393–2396 (1989).

    CAS  PubMed  Google Scholar 

  3. Kim, S.–S. et al. Extremophiles in the press, ( 1999).

    Google Scholar 

  4. Shaw, J.P., Petsko, G.A. & Ringe, D. Biochemistry 36, 1329– 1342 (1997).

    Article  CAS  Google Scholar 

  5. Yorifugi, T., Misono, H. & Soda, K. J. Biol. Chem. 246, 5093– 5101 (1971).

    Google Scholar 

  6. Gallo, K.A. & Knowles, J.R. Biochemistry 32, 3981–3990 (1993).

    Article  CAS  Google Scholar 

  7. Yagasaki, M. et al. Biosci. Biotechnol. Biochem. 59, 610 –614 (1995).

    Article  CAS  Google Scholar 

  8. Gallo, K.A., Tanner, M.E. & Knowles, J.R. Biochemistry 32, 3991– 3997 (1993).

    Article  CAS  Google Scholar 

  9. Tanner, M.E., Gallo, K.A. & Knowles, J.R. Biochemistry 32, 3998– 4006 (1993).

    Article  CAS  Google Scholar 

  10. Doublet, P., van Heijenoort, J. & MengeN-Lecreulx, D. Microb. Drug Resist. 2, 43–49 (1996).

    Article  CAS  Google Scholar 

  11. Choi, S.Y., Esaki, N., Yoshimura, T. & Soda, K. J. Biochem. 112, 139–142 (1992).

    Article  CAS  Google Scholar 

  12. Yamauchi, T. et al. J. Biol. Chem. 267, 18361– 18364 (1992).

    CAS  PubMed  Google Scholar 

  13. Stamper, C.G., Morollo, A.A. & Ringe, D. Biochemistry 37, 10438– 10445 (1998).

    Article  CAS  Google Scholar 

  14. Glavas, S. & Tanner, M.E. Bioorg. Med. Chem. Lett. 7, 2265–2270 (1997).

    Article  CAS  Google Scholar 

  15. Tanner, M.E. & Miao, S. Tetrahedron Lett. 35, 4073–4076 (1994).

    Article  CAS  Google Scholar 

  16. Sander, C. & Schneider, R. Proteins Struct. Funct. Genet. 9, 56–68 (1991 ).

    Article  CAS  Google Scholar 

  17. Friedman, A.M., Fischmann, T.O. & Steitz, T.A. Science 268, 1721– 1727 (1995).

    Article  CAS  Google Scholar 

  18. Wolodko, W.T., Fraser, M.E., James, M.N.G. & Bridger, W.A. J. Biol. Chem. 289, 10883–10890 (1994).

    Google Scholar 

  19. van Montfort, R.L. et al. Structure 5, 217–225 (1997).

    Article  CAS  Google Scholar 

  20. Cole, S.T. et al. Nature 393, 537–544 (1998).

    Article  CAS  Google Scholar 

  21. Fleischmann, R.D. et al. Science 269, 496–512 (1995).

    Article  CAS  Google Scholar 

  22. Tomb, J.F. et al. Nature 388, 539–547 (1997).

    Article  CAS  Google Scholar 

  23. Neidhart, D.J., et al. Biochemistry 30, 9264– 9273 (1991).

    Article  CAS  Google Scholar 

  24. Tanner, M.E. & Kenyon, G.L. Comprehensive biological catalysis II, 7–41 (Academic Press, San Diego, CA; 1998).

    Google Scholar 

  25. Gerlt, J.A. et al. J. Am. Chem. Soc. 113, 9667– 9669 (1991).

    Article  CAS  Google Scholar 

  26. Gerlt, J.A. & Gassman, P.G. J. Am. Chem. Soc. 114, 5928–5934 (1992).

    Article  CAS  Google Scholar 

  27. Kallarakal, A.T. et al. Biochemistry 34, 2788– 2797 (1995).

    Article  CAS  Google Scholar 

  28. Hasson, M.S. et al. Proc. Natl. Acad. Sci. USA 95, 10396 –10401 (1998).

    Article  CAS  Google Scholar 

  29. Babbitt P.C., et al. Biochemistry 35, 16489– 16501 (1996).

    Article  CAS  Google Scholar 

  30. Hwang, K. Y. et al Acta Crystallogr. D 55, 927– 928 (1999).

    Article  CAS  Google Scholar 

  31. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  Google Scholar 

  32. Collaborative Computational Project Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  33. Sack, J.S. J. Mol. Graphics 6, 224–225 (1988).

    Article  Google Scholar 

  34. Brünger, A.T. X–PLOR, a system for crystallography and NMR, Version 3.1 (Yale Univ. Press, New Haven, CT; 1992).

    Google Scholar 

  35. Kabsch, W. & Sander, C. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S.-H. Kim, T. Earnest and L.-W. Huang for help during data collection on the ALS (LBNL; Berkeley), and M. Tanner (UBC, Vancouver, BC) and J.-H. Yu (KIST) for helpful comments and critical reading of the manuscript. The Macromolecular Crystallography facility at beamline 5.0.2 in the ALS is principally funded by the Office of Biological and Environmental Research (US Department of Energy), with contributions from LBNL, Amgen, Roche Biosciences, the University of California (Berkeley), and Lawrence Livermore National Laboratory. This work was supported by the KIST (KIST 2000 program), MOST (Biotech 2000 program) and KAST (young scientist award to Y.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunje Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, K., Cho, CS., Kim, S. et al. Structure and mechanism of glutamate racemase from Aquifex pyrophilus . Nat Struct Mol Biol 6, 422–426 (1999). https://doi.org/10.1038/8223

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8223

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing