Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solution structure of the extended neuronal nitric oxide synthase PDZ domain complexed with an associated peptide

Abstract

The PDZ domain of neuronal nitric oxide synthase (nNOS) functions as a scaffold for organizing the signal transduction complex of the enzyme. The NMR structure of a complex composed of the nNOS PDZ domain and an associated peptide suggests that a two-stranded β-sheet C-terminal to the canonical PDZ domain may mediate its interaction with the PDZ domains of postsynaptic density-95 and α-syntrophin. The structure also provides the molecular basis of recognition of Asp–X–Val–COOH peptides by the nNOS PDZ domain. The role of the C-terminal extension in Asp-X-Val-COOH peptide binding is investigated. Additionally, NMR studies further show that the Asp-X-Val-COOH peptide and a C-terminal peptide from a novel cytosolic protein named CAPON bind to the same pocket of the nNOS PDZ domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Stereoview showing the best-fit superposition of the backbone atoms (N, Cα, and C') of the final 15 structures of the nNOS PDZ–MelR peptide complex.
Figure 2: a, Stereoview atom representation of the MelR peptide binding pocket of nNOS PDZ.
Figure 3: a, Plot of combined 1H and 15N chemical shift differences of the extended and canonical lengths of nNOS PDZ complexed with the MelR peptide.
Figure 4: Model for nNOS signal transduction complex organization by PDZ domains.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Ponting, C.P., Phillips, C., Davies, K.E. & Blakes, D.J. BioEssays 19, 469–479 ( 1997).

    Article  CAS  Google Scholar 

  2. Sheng, M. Neuron 17, 575–578 ( 1996).

    Article  CAS  Google Scholar 

  3. Craven, S.E. & Bredt, D.E. Cell 93, 495–498 (1998).

    Article  CAS  Google Scholar 

  4. Harrision, S.C. Cell 86, 341–343 ( 1996).

    Article  Google Scholar 

  5. Tsunoda, S. et al. Nature 388, 243– 249 (1997).

    Article  CAS  Google Scholar 

  6. Kaech, S.M., Whitfield, C.W. & Kim, S.K. Cell 94, 761– 771 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  7. Doyle, D.A. et al. Cell 85, 1067–1076 (1996).

    Article  CAS  Google Scholar 

  8. Songyang, Z. et al. Science 275, 73–77 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  9. Brenman, J.E. et al. Cell 84, 757–767 (1996).

    Article  CAS  Google Scholar 

  10. Schepens, J., Cuppen, E., Wiernga, B. & Hendriks, W. FEBS Lett. 409, 53–56 (1997).

    Article  CAS  Google Scholar 

  11. Stricker, N.L. et al. Nature Biotech. 15, 336– 342 (1997).

    Article  CAS  Google Scholar 

  12. Shieh, B.H. & Zhu, M.Y. Neuron 16, 991–998 (1996).

    Article  CAS  Google Scholar 

  13. Cuppen, E., Gerrits, H., Pepers, B., Wieringa, B. & Hendriks, W. Mol. Biol. Cell 9, 671– 683 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  14. Cabral, J.H.M. et al. Nature 382, 649– 652 (1996).

    Google Scholar 

  15. Schultz, L. et al. Nature Struct. Biol. 5, 19– 24 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  16. Daniels, D.L., Cohen, A.R., Anderson, J.M. & Brüger, A.T. Nature Struct. Biol. 5, 317–325 (1998).

    Article  CAS  Google Scholar 

  17. Stuehr, D.J. Annu. Rev. Pharmacol. Toxicol. 37, 339– 359 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  18. Jaffrey, S.R. & Snyder S.H. Science 274, 774–777 (1996).

    Article  CAS  Google Scholar 

  19. Fan, J.–S. et al. J. Biol. Chem. 273, 33472– 33481 (1998).

    Article  CAS  Google Scholar 

  20. Jaffrey, S.R., Snowman, A.M., Eliasson, M.J., Cohen, N.A. & Snyder S.H. Neuron 20, 115–124 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  21. Vesely, D.L. Mol. Cell Biochem. 35, 55–58 (1981).

    Article  CAS  PubMed Central  Google Scholar 

  22. Vuister, G.W. et al. J. Magn. Reson. B101, 210– 213 (1993).

    Article  Google Scholar 

  23. Gee, S.H. et al. J. Biol. Chem. 273, 21980– 21987 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  24. Farmer, B.T. et al. Nature Struct. Biol. 3, 995– 997 (1996).

    Article  CAS  Google Scholar 

  25. Tochio, H., Ohki, S., Zhang. Q., Li, M. & Zhang, M. Nature Struct. Biol. 5, 965–969 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  26. Bax, A. & Grzesiek, S. Acc. Chem. Res. 26, 131–138 (1993).

    Article  CAS  Google Scholar 

  27. Neri, D., Szyperski, T., Otting, G., Senn, H., & Wuthrich, K. Biochemistry 28, 7510–7516 (1989).

    Article  CAS  Google Scholar 

  28. Kay, L.E. & Bax, A. J. Magn. Res. 86, 110–126 (1990).

    CAS  Google Scholar 

  29. Zwahlen, C. et al. J. Am. Chem. Soc. 119, 6711– 6721 (1997).

    Article  CAS  Google Scholar 

  30. Nilges, M., Clore, G.M. & Gronenborn, A.M. FEBS Lett. 239, 129– 136 (1988).

    Article  CAS  Google Scholar 

  31. Brüger, A.T. X–PLOR. A system for X–ray crystallography and NMR (Yale University Press, New Haven, Conneticut; 1992).

    Google Scholar 

  32. Koradi, R., Billeter, M. & Wuthrich, K. J. Mol. Graph. 14, 51– 55 (1996).

    Article  CAS  Google Scholar 

  33. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  34. Merritt, E. & Murphy, M. Acta Cryst. D50, 869–873 (1994).

    CAS  Google Scholar 

  35. Nicholls, A. GRASP: graphical representation and analysis of surface properties (Columbia University, New York, 1992).

    Google Scholar 

  36. Laskwoski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. E. Kay for providing NMR pulse sequences, R. Muhandiram for help with the NMR experiments, D. Bredt for communicating unpublished experimental results, and D. Miller-Martini for critical reading and comments on the manuscript. This research was supported by the RGC grants from the Research Grant Council of Hong Kong. The NMR spectrometer used in this work was purchased by the Biotechnology Research Institute of HKUST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjie Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tochio, H., Zhang, Q., Mandal, P. et al. Solution structure of the extended neuronal nitric oxide synthase PDZ domain complexed with an associated peptide. Nat Struct Mol Biol 6, 417–421 (1999). https://doi.org/10.1038/8216

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing