Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Interaction of Hsp70 chaperones with substrates

Abstract

Determination of the structure of the substrate binding domain of the Escherichia coli Hsp70 chaperone, DnaK, and the biochemical characterisation of the motif it recognizes within substrates provide insights into the principles governing Hsp70 interaction with polypeptide chains. DnaK recognizes extended peptide strands composed of up to five consecutive hydrophobic residues within and positively charged residues outside the substrate binding cavity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Morimoto, R.I., Tissieres, A. & Georgopoulos, C. The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press (1994)

    Google Scholar 

  2. Hartl, F.U. Molecular chaperones in cellular protein folding. Nature 381, 571–580 (1996)

    Article  CAS  PubMed  Google Scholar 

  3. Gething, M.-J.H. & Sambrook, J.F. Protein folding in the cell. Nature 355, 33–45 (1992)

    Article  CAS  PubMed  Google Scholar 

  4. Langer, T., Lu, C., Echols, H., Flanagan, J., Hayer, M.K. & Hartl, F.U. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356, 683–689 (1992)

    Article  CAS  PubMed  Google Scholar 

  5. Frydman, J., Nimmesgern, E., Ohtsuka, K. & Hartl, F.U. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370, 111–117 (1994)

    Article  CAS  PubMed  Google Scholar 

  6. Buchberger, A., Schröder, H., Hesterkamp, T., Schönfeld, H.-J. & Bukau, B. Substrate shuttling between the DnaK and GroEL systems indicates a chaperone network promoting protein folding. J. Mol. Biol. 261, 328–333 (1996)

    Article  CAS  PubMed  Google Scholar 

  7. Freeman, B.C. & Morimoto, R.I. The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. EMBO J. 15, 2969–2979 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bukau, B., Hesterkamp, H. & Luirink, J. Growing up in a dangerous enviroment: a network of multiple targeting and folding pathways for nascent polypetides in the cytosol. Trends Cell Biol. 6, 480–486 (1996)

    Article  CAS  PubMed  Google Scholar 

  9. Craig, E.A., Gambill, B.D. & Nelson, R.J. Heat shock proteins: molecular chaperones of protein synthesis. Microbiological Reviews 57, 402–414 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bult, C.J., White, O., Olsen, G.J., Zhou, L., Fleischmann, R.D., Sutton, G.G., Blake, J.A., M., F.L., A., C.R., al., e. & Venter, J.C. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073 (1996)

    Article  CAS  PubMed  Google Scholar 

  11. Georgopoulos, C. The emergence of the chaperone machines. TIBS 17, 295–299 (1992)

    CAS  PubMed  Google Scholar 

  12. James, P., Pfund, C. & Craig, E.C. Functional specificity among Hsp70 molecular chaperones. Science 275, 387–389 (1997)

    Article  CAS  PubMed  Google Scholar 

  13. Schatz, G. & Dobberstein, B. Common principles of protein translocation across membranes. Science 271, 1519–1526 (1996)

    Article  CAS  PubMed  Google Scholar 

  14. Georgopoulos, C., Liberek, K., Zylicz, M. & Ang, D. Properties of the heat shock proteins of Escherichia coli and the autoregulation of the heat shock response. In The biology of heat shock proteins and molecular chaperones (R. I. Morimoto, A. Tissieres & C. Georgopoulos, eds.) 209–250 (Cold Spring Harbor Laboratory Press; 1994)

    Google Scholar 

  15. Chappell, T.G., Welch, W., Schlossman, D.M., Palter, K.B., Schlesinger, M.J. & Rothman, J.E. Uncoating ATPase is a member of the 70 kilodalton family of stress proteins. Cell 45, 3–13 (1986)

    Article  CAS  PubMed  Google Scholar 

  16. Sherman, M. & Goldberg, A.L. Involvement of the chaperon DnaK in the rapid degradation of a mutant protein in Escherichia coli. EMBO J. 11, 71–77 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Straus, D.B., Walter, W.A. & Gross, C.A. Escherichia coli heat shock gene mutants are defective in proteolysis. Genes & Dev. 2, 1851–1858 (1988)

    Article  CAS  Google Scholar 

  18. Straus, D., Walter, W. & Gross, C. DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of σ32. Genes & Dev. 4, 2202–2209 (1990)

    Article  CAS  Google Scholar 

  19. Craig, E.A. & Gross, C.A. Is hsp70 the cellular thermometer? TIBS 16, 135–140 (1991)

    CAS  PubMed  Google Scholar 

  20. Wickner, S., Hoskins, J. & McKenney, K. Monomerization of RepA dimers by heat shock proteins activates binding to DMA replication origins. Proc. Natl. Acad. Sci. USA 88, 7903–7907 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blaszczak, A., Zylicz, M., Georgopoulos, C. & Liberek, K. Both ambient temperature and the DnaK chaperone machine modulate the heat shock response in Escherichia coli by regulating the switch between σ70 and σ32 factors assembled with RNA polymerase. EMBO J. 14, 5085–5093 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gamer, J., Multhaup, G., Tomoyasu, T., McCarty, J.S., Rüdiger, S., Schönfeld, H.-J., Schirra, C., Bujard, H. & Bukau, B. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the E. coli heat shock transcription factor σ32. EMBO J. 15, 607–617 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schröder, H., Langer, T., Hartl, F.-U. & Bukau, B. Dnak, DnaJ, GDnaK, DnaJ, GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 12, 4137–4144 (1993)

    Article  PubMed  PubMed Central  Google Scholar 

  24. Skowyra, D., Georgopoulos, C. & Zylicz, M. The E. coli dnaK gene product, the Hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner. Cell 62, 939–944 (1990)

    Article  CAS  PubMed  Google Scholar 

  25. Bukau, B. Regulation of the E. coli heat shock response. Molec. Microbiol. 9, 671–680 (1993)

    Article  CAS  Google Scholar 

  26. Flynn, G.C., Chappell, T.G. & Rothman, J.E. Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245, 385–390 (1989)

    Article  CAS  PubMed  Google Scholar 

  27. Flynn, G.C., Pohl, J., Flocco, M.T. & Rothman, J.E. Peptide-binding specificity of the molecular chaperone BiP. Nature 353, 726–730 (1991)

    Article  CAS  PubMed  Google Scholar 

  28. McCarty, J.S., Buchberger, A., Reinstein, J. & Bukau, B. The role of ATP in the functional cycle of the DnaK chaperone system. J. Mol. Biol. 249, 126–137 (1995)

    Article  CAS  PubMed  Google Scholar 

  29. Liberek, K., Marszalek, J., Ang, D., Georgopoulos, C. & Zylicz, M. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. USA 88, 2874–2878 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jordan, R. & McMacken, R. Modulation of the ATPase Activity of the Molecular Chaperone DnaK by Peptides and the DnaJ and GrpE Heat Shock Proteins. J. Biol. Chem. 270, 4563–4569 (1995)

    Article  CAS  PubMed  Google Scholar 

  31. Höhfeld, J., Minami, Y. & Hartl, F.U. Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 83, 589–598 (1995)

    Article  PubMed  Google Scholar 

  32. Cyr, D.M., Lu, X. & Douglas, M.G. Regulation of Hsp70 function by a eukaryotic DnaJ homolog. J. Biol. Chem. 29, 20927–20931 (1992)

    Google Scholar 

  33. Levy, E.J., McCarty, J., Bukau, B. & Chirico, W.J. Conserved ATPase and luciferase refolding activities between bacteria and yeast Hsp70 chaperones and modulator. FEBS Lett. 368, 435–440 (1995)

    Article  CAS  PubMed  Google Scholar 

  34. Wang, T.-F., Chang, J. & Wang, C. Identification of the peptide binding domain of Hsc70. J. Biol. Chem. 268, 26049–26051 (1993)

    CAS  PubMed  Google Scholar 

  35. Flaherty, K.M., Deluca-Flaherty, C. & McKay, D.B. Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature (London) 346, 623–628 (1990)

    Article  CAS  Google Scholar 

  36. Zhu, X., Zhao, X., Burkholder, W.F., Gragerov, A., Ogata, C.M., Gottesman, M. & Hendrickson, W.A. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606–1614 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Burkholder, W.F., Zhao, X., Zhu, X. & Hendrickson, W.A. Mutations in the C-terminal fragment of DnaK affecting peptide binding. Proc. Nat. Acad. Sci. USA 93, 10632–10637 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Landry, S.J., Jordan, R., McMacken, R. & Gierasch, L.M. Different conformations for the same polypeptide bound to chaperones DnaK and GroEL. Nature 355, 455–457 (1992)

    Article  CAS  PubMed  Google Scholar 

  39. Richarme, G. & Kohiyama, M. Specificity of the Escherichia coli chaperone DnaK (70-kDa heat shock protein) for hydrophobic amino acids. J. Biol. Chem. 268, 24074–24077 (1993)

    CAS  PubMed  Google Scholar 

  40. Wickner, S., Hoskins, J. & McKenny, K. Function of DnaJ and DnaK as chaperones of origin specific DMA binding by RepA. Nature (London) 350, 165–167 (1991)

    Article  CAS  Google Scholar 

  41. Gragerov, A., Zeng, L., Zhao, X., Burkholder, W. & Gottesman, M.E. Specificity of DnaK-peptide binding. J. Mol. Biol. 235, 848–854 (1994)

    Article  CAS  PubMed  Google Scholar 

  42. Kramer, A., Schuster, A., Reineke, U., Malin, R., Volkmer-Engert, R., Landgraf, C. & Schneider-Mergener, J. Combinatorial cellulose-bound peptide libraries: screening tools for the identification of peptidesthat bind ligands with predefined specificity. Methods (Comp. Meth. Enzymol.) 6, 388–395 (1994)

    Article  CAS  Google Scholar 

  43. Rüdiger, S., Germeroth, L., Schneider-Mergener, J. & Bukau, B. Substrate specificity of the DnaK chaperone determined by screening of cellulose-bound peptide libraries. EMBO J. 16, 1501–1507 (1997)

    Article  PubMed  PubMed Central  Google Scholar 

  44. Blond-Elguindi, S., Cwirla, S.E., Dower, W.J., Lipshutz, R.J., Sprang, S.R., Sambrook, J.F. & Gething, M.-J.H. Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75, 717–728 (1993)

    Article  CAS  PubMed  Google Scholar 

  45. Alfano, C. & McMacken, R. Ordered assembly of nucleoprotein structures at the bacteriophage λ, replication origin during the initiation of DNA replication. J. Biol. Chem. 264, 10699–10708 (1989)

    CAS  PubMed  Google Scholar 

  46. Gamer, J., Bujard, H. & Bukau, B. Physical interaction between heat shock proteins DnaK, DnaJ, GrpE and the bacterial heat shock transcriptional factor σ32. Cell 69, 833–842 (1992)

    Article  CAS  PubMed  Google Scholar 

  47. Liberek, K., Galitski, T.P., Zylicz, M. & Georgopoulos, C. The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the σ32 transcription factor. Proc. Natl. Acad. Sci. USA 89, 3516–3520 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fourie, A.M., Sambrook, J.F. & Gething, M.-J.H. Common and divergent peptide binding specificities of Hsp70 molecular chaperones. J. Biol. Chem. 269, 30470–30478 (1994)

    CAS  PubMed  Google Scholar 

  49. Gragerov, A. & Gottesman, M.E. Different peptide binding specificities of Hsp70 family members. J. Mol. Biol. 241, 133–135 (1994)

    Article  CAS  PubMed  Google Scholar 

  50. Schmid, D., Baici, A., Gehring, H. & Christen, P. Kinetics of molecular chaperone action. Science 263, 971–973 (1994)

    Article  CAS  PubMed  Google Scholar 

  51. McCarty, J.S., Rüdiger, S., Schönfeld, H.-J., Schneider-Mergener, J., Nakahigashi, K., Yura, T. & Bukau, B. Regulatory region C of the E. coli heat shock transcription factor, σ32, constitutes a DnaK binding site and is conserved among eubacteria. J. Mol. Biol. 256, 829–837 (1996)

    Article  CAS  PubMed  Google Scholar 

  52. Buchberger, A., Valencia, A., McMacken, R., Sander, C. & Bukau, B. The chaperone function of DnaK requires the coupling of ATPase activity with substrate binding through residue E171. EMBO J. 13, 1687–1695 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Greene, L.E., Zinner, R., Naficy, S. & Eisenberg, E. Effect of nucleotide on the binding of peptides to 70-kDa heat shock protein. J. Biol. Chem. 270, 2967–2973 (1995)

    Article  CAS  PubMed  Google Scholar 

  54. Takeda, S. & McKay, D.B. Kinetics of Peptide Binding to the Bovine 70 kDa Heat Shock Cognate Protein, a Molecular Chaperone. Biochemistry 35, 4636–4644 (1996)

    Article  CAS  PubMed  Google Scholar 

  55. Palleros, D.R., Reid, K.L., Shi, L., Welch, W.J. & Fink, A.L. ATP-induced protein-Hsp70 complex dissociation requires K+ but not ATP hydrolysis. Nature 365, 664–666 (1993)

    Article  CAS  PubMed  Google Scholar 

  56. Theyssen, H., Schuster, H.-P., Bukau, B. & Reinstein, J. SThe second step of ATP Binding to DnaK Induces Peptide Release. J. Mol. Biol. 263, 657–670 (1996)

    Article  CAS  PubMed  Google Scholar 

  57. Munro, S. & Pelham, H.R.B. An Hsp70-like protein in the ER: identity with the 78 kDa glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46, 291–300 (1986)

    Article  CAS  PubMed  Google Scholar 

  58. Liberek, K., Skowyra, D., Zylicz, M., Johnson, C. & Georgopoulos, C. The Escherichia coli DnaK chaperone, the 70-kDa heat shock protein eukaryotic equivilant, changes conformation upon ATP hydrolysis, thus triggering its dissociation from a bound target protein. J. Biol. Chem. 266, 14491–14496 (1991)

    CAS  PubMed  Google Scholar 

  59. Wei, J., Gaut, J.R. & Hendershot, L.M. In vitro Dissociation of BiP-Peptide Complexes Requires a Conformational Change in BiP after ATP Binding but Does Not Require ATP Hydrolysis. J. Biol. Chem. 270, 26677–26682 (1995)

    Article  CAS  PubMed  Google Scholar 

  60. Hoffmann, H.J., Lyman, S.K., Lu, C., Petit, M.A. & Echols, H. Activity of the Hsp70 chaperone complex-DnaK, DnaJ, and GrpE-in initiating phage λ DNA replication by sequestering and releasing λ P protein. Proc. Natl. Acad. Sci. USA 89, 12108–12111 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wall, D., Zylicz, M. & Georgopoulos, C. The NH2-terminal 108 amino acids of the Escherichia coli DnaJ protein stimulate the ATPase activity of DnaK and are sufficient for λ replication. J. Biol. Chem. 269, 5446–5451 (1994)

    CAS  PubMed  Google Scholar 

  62. Szabo, A., Langer T., Schröder, H., Flanagan, J., Bukau, B. & Hartl, F.U. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system-DnaK, DnaJ and GrpE. Proc. Natl. Acad. Sci. USA 91, 10345–10349 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Banecki, B. & Zylicz, M. Real Kinetics of the DnaK/DnaJ/GrpE Molecular Chaperone Machine Action. J. Biol. Chem. 271, 6137–6143 (1996)

    Article  CAS  PubMed  Google Scholar 

  64. Ha, J.-H. & McKay, D.B. Kinetics of Nucleotide-lnduced Changes in the Tryptophane Fluorescence of the Molecular Chaperone Hsc70 and Its Subfragments Suggest the ATP-lnduced Conformational Change Follows Initial ATP Binding. Biochemistry 34, 11635–11644 (1995)

    Article  CAS  PubMed  Google Scholar 

  65. Banecki, B., Zylicz, M., Bertoli, E. & Tanfani, F. Structural and functional relationships in DnaK and DnaK756 heat-shock proteins from Escherichia coli. J. Biol. Chem. 267, 25051–25058 (1992)

    CAS  PubMed  Google Scholar 

  66. Buchberger, A., Theyssen, H., Schröder, H., McCarty, J.S., Virgallita, G., Milkereit, P., Reinstein, J. & Bukau, B. Nucleotide-induced Conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomaincommunication. J. Biol. Chem. 270, 16903–16910 (1995)

    Article  CAS  PubMed  Google Scholar 

  67. Shi, L., Kataoka, M. & Fink, A.L. Conformational Characterization of DnaK and Its Complexes by Small-Angle X-ray Scattering. Biochemistry 35, 3297–3308 (1996)

    Article  CAS  PubMed  Google Scholar 

  68. Wilbanks, S.M., Chen, L., Tsuruta, H., Hodgson, K.O. & McKay, D.B. Solution small-angle X-ray scattering study of the molecular chaperone hsc70 and its subfragments. Biochem. 34, 12095–12106 (1995)

    Article  CAS  Google Scholar 

  69. Fung, K.L., Hilgenberg, L., Wang, N.M. & Chirico, W.J. Conformations of the Nucleotide and Polypeptide Binding Domains of a Cytosolic Hsp70 Molecular Chaperone Are Coupled. J. Biol. Chem. 271, 21559–21565 (1996)

    Article  CAS  PubMed  Google Scholar 

  70. Wilbanks, S.M. & McKay, D.B. How Potassium Affects the Activity of the Molecular Chaperone Hsc70. II. Potassium Binds Specifically in the ATPase Active Site. J. Biol. Chem. 270, 2251–2257 (1995)

    Article  CAS  PubMed  Google Scholar 

  71. Kamath-Loeb, A.S., Lu, S.Z., Suh, W.-C., Lonetto, M.A. & Gross, C.A. Analysis of Three DnaK Mutant Proteins Suggests That Progression through the ATPase Cycle Requires Conformational Changes. J. Biol. Chem. 270, 30051–30059 (1995)

    Article  CAS  PubMed  Google Scholar 

  72. Holmes, K.C., Sander, C. & Valencia, A. A new ATP-binding fold in actin, hexokinase and Hsc70. Trends Cell Biol. 3, 53–59 (1993)

    Article  CAS  PubMed  Google Scholar 

  73. Tirion, M.M. & ben-Avraham, D. Normal mode analysis of G-actin. J. Mol. Biol. 230, 186–195 (1993).349

    Article  CAS  PubMed  Google Scholar 

  74. Harrison, C.J., Hayer-Hartl, M., Diliberto, M., Hartl, F.U. & Kuriyan, J. Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science in the press.

  75. Packschier, L. et al. The molecular chaperone GrpE accelerates nucleotide exchange of DnaK by an associative displacement mechanism. Biochemistry in the press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rüdiger, S., Buchberger, A. & Bukau, B. Interaction of Hsp70 chaperones with substrates. Nat Struct Mol Biol 4, 342–349 (1997). https://doi.org/10.1038/nsb0597-342

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0597-342

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing