Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vitro evolution of thermodynamically stable turns

Abstract

To determine the role of primary structure in specifying turns, random sequences (guests) were substituted for the native turn sequences in a series of proteins (hosts) of differing thermo-dynamic stabilities.The fraction of inserts that result in active proteins is measured as a function of the stability of the host and temperature. With a highly stable host more than half of the inserts give functional proteins. However, a smaller fraction of sequences supports folding as the stability of the host decreases, and the temperature increases. The sequences of many of the selected inserts resemble the wild-type turn, and those that diverge match other established turn preferences. Thermodynamic measurements show that turn sequences selected under stringent conditions result in the most stable proteins. Thus, β-turns appear to be under evolutionary pressure favouring thermodynamically stable structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rose, G.D., Gierasch, L.M. & Smith, J.A. Turns in peptides and proteins. Adv. Prot. Chem. 37, 1–109 (1985).

    CAS  Google Scholar 

  2. Hynes, T.R., Kautz, R.A., Goodman, M.A., Gill, J.F. & Fox, R.O. Transfer of a β-turn structure to a new protein context. Nature 339, 73–76 (1989).

    Article  CAS  Google Scholar 

  3. Predki, P.F., Agrawal V., Trunger, A.T. & Regan, L Amino-acid substitutions in a surface turn modulate protein stability. Nature Struct. Biol. 3, 54–58 (1996).

    Article  CAS  Google Scholar 

  4. Wright, P.E., Dyson, J.H. & Lerner, R.A. Conformation of peptide fragments of proteins in aqueous solution: Implications for initiation of protein folding. Biochemistry 27, 7167–7175 (1988).

    Article  CAS  Google Scholar 

  5. Milburn, P.J., Konishi, Y., Meiwald, Y.C. & Scheraga, H.A. Chain reversals in model peptides: Studies of cystine-containing cyclic peptides I. Conformational free energies of cyclizationof hexapeptides of sequence Ac-Cys-X-Pro-Gly-Y-Cys-NHMe. J. Am. Chem. Soc. 109, 4486–4496 (1987).

    Article  CAS  Google Scholar 

  6. Garrett, J.B., Mullins, L.S. & Raushel, F.M. Are turns required for the folding of ribonuclease T1 ? Prot. Sci. 5, 204–211 (1996).

    Article  CAS  Google Scholar 

  7. Helms, L.R. & Wetzel, R. Destabilizing loop swaps in the CDRs of an immunoglobulin VL domain. Prot. Sci. 4, 2073–2081 (1995).

    Article  CAS  Google Scholar 

  8. Brunet, A.P. et al. The role of turns in the structure of an oc-helical protein. Nature 364, 355–358 (1993).

    Article  CAS  Google Scholar 

  9. Castagnoli, L., Vetriani, C. & Cesareni, G. Linking an easily detectable phenotype to the folding of a common structural motif. Selection of rare turn mutations that prevent the folding of Rop. J. Mol. Biol. 237, 378–387 (1994).

    Article  CAS  Google Scholar 

  10. Vlassi, M. et al. Restored heptad pattern continuity does not alter the folding of four α-helix bundle. Nature Struct. Biol. 1, 706–716 (1994).

    Article  CAS  Google Scholar 

  11. Viguera, A.R., Blanco, F.J. & Serrano, L. The order of secondary structure elements does not determine the stucture of a protein but does affect its folding kinetics. J. Mol. Biol. 247, 670–681 (1995).

    CAS  Google Scholar 

  12. Matthews, B.W. Structure and genetic analysis of protein folding and stability. Curr. Opin. Struct Biol. 3, 589–593 (1993).

    Article  CAS  Google Scholar 

  13. Feng, Y. & Sligar, S.G. Effect of heme binding on the structure and stability of Escherichia coli apocytochromeb562. Biochemistry 30, 10150–10155 1991).

    Article  CAS  Google Scholar 

  14. O′Neil, K.T., Hoess, R.H., Raleigh, D.P. & DeGrado, W.F. Thermodynamic genetics of the folding of the B1 immunoglobin-binding domain from streptococcal protein G. Proteins, Struct. Funct. Genet. 21, 11–21 (1995).

    Article  Google Scholar 

  15. Sturtevant, J.M. The thermodynamic effects of protein mutations. Curr. Opin. Struct. Biol. 4, 69–78 1994).

    Article  CAS  Google Scholar 

  16. Gronenborn, A.M. et al. A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science 253, 657–661 (1991).

    Article  CAS  Google Scholar 

  17. Gallgher, T., Alexander, P., Bryan, P. and Gilliland, G.L Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. Biochemistry 33, 4721–4729 (1994).

    Article  Google Scholar 

  18. Alexander, P., Fahnestock, S., Lee, T., Orban, J. & Bryan, P. Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: why small proteins tend to have high denaturation temperatures. Biochemistry 31, 3597–3603 (1992).

    Article  CAS  Google Scholar 

  19. Sibanda, B.L, Blundell, T.L & Thornton, J.M. Conformation of β-hairpins in protein structures. J. Mol. Biol. 206, 759–777 1988).

    Article  Google Scholar 

  20. Blanco, F.J., Rivas, G. & Serrano, L. A short linear peptide that folds into a native stable beta-hairpin in aqueous solution. Nature Struct. Biol. 1, 584–590 (1994).

    Article  CAS  Google Scholar 

  21. Derrick, J. & Wigley, D. Crystal structure of a streptococcal protein G domain bound to an Fab fragment. Nature 359, 752–754 (1992).

    Article  CAS  Google Scholar 

  22. Gronenborn, A.M. & Clore, G.M. Identification of the contact surface of a streptococcal protein G domain complexed with ahuman Fc fragment. J. Mol. Biol. 233, 331–335 (1993).

    Article  CAS  Google Scholar 

  23. Lian L-Y, Barsukov, I.L., Derrick, J.P. & Roberts G.C.K. Mapping the interactions between streptococcal protein G and the Fab fragment of IgG in solution. Nature Struct. Biol. 1, 355–357 (1994).

    Article  CAS  Google Scholar 

  24. Frank, M.K., Clore, G.M. & Gronenborn, A.M. Structural and dynamic characterization of the urea denatured state of the immunoglobulin binding domain of streptococcal protein G by multidimensional heteronuclear NMR spectroscopy. Prot. Sci. 4, 2605–2615 (1995).

    Article  CAS  Google Scholar 

  25. Presta, L.G. & Rose, G.D. Helix signals in proteins. Science 240, 1632–1641 (1988).

    Article  CAS  Google Scholar 

  26. Richardson, J.S. & Richardson, D.C. Amino acid preferences for specific locations at the ends of alpha helices. Science 240, 1648–1652 (1988).

    Article  CAS  Google Scholar 

  27. Sibanda, B.L & Thornton, J.M. β-hairpin families in globular proteins. Nature 316, 170–174 (1985).

    Article  CAS  Google Scholar 

  28. Mattos, C., Petsko, G.A. & Karplus, M. Analysis of two-residue turns in proteins. J. Mol. Biol. 238, 733–747 (1994).

    Article  CAS  Google Scholar 

  29. Chothia, C. Conformation of twisted beta-pleated sheets in proteins. J. Mol. Biol. 75, 295–302 (1973).

    Article  CAS  Google Scholar 

  30. Thornton, J.M., Jones, J.D.T., MacArthur, M.W., Orengo, C.M. & Swindells, M.B. Protein folds: towards understanding folding from inspection of native structures. Phil. Trans. R. Soc Lond. B348, 71–79 (1995).

    Google Scholar 

  31. Shrauber, H., Eisenhaber, F. & Argos P. Rotamers: To be or not to be? An analysis of amino acid side-chain conformations in globular proteins. J. Mol. Biol. 230, 592–612 (1993).

    Article  Google Scholar 

  32. Edelhoch, H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948–1954 (1967).

    Article  CAS  Google Scholar 

  33. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  34. Fahnestock, S.R., Alexander, P., Filpula, D. & Nagle, J. In Bacterial Immunoglobin Binding Proteins Vol. 1 (Boyle, M.P.D., ed.) 133–148, (Academic Press, San Diego; 1990).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, H., Hoess, R. & DeGrado, W. In vitro evolution of thermodynamically stable turns. Nat Struct Mol Biol 3, 446–451 (1996). https://doi.org/10.1038/nsb0596-446

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0596-446

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing