Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of proteolytic fragments of the redox-sensitive Hsp33 with constitutive chaperone activity

Abstract

Heat shock protein 33 (Hsp33) inhibits aggregation of partially denatured proteins during oxidative stress. The chaperone activity of Hsp33 is unique among heat shock proteins because the activity is reversibly regulated by cellular redox status. We report here the crystal structure of the N-terminal region of Hsp33 fragments with constitutive chaperone activity. The structure reveals that the N-terminal portion of Hsp33 forms a tightly associated dimer formed by a domain crossover. A concave groove on the dimeric surface contains an elongated hydrophobic patch that could potentially bind denatured protein substrates. The termini of the subunits are located near the hydrophobic patch, indicating that the cleaved C-terminal domain may shield the hydrophobic patch in an inactive state. Two of the four conserved zinc-coordinating cysteines are in the end of the N-terminal domain, and the other two are in the cleaved C-terminal domain. The structural information and subsequent biochemical characterizations suggest that the redox switch of Hsp33 occurrs by a reversible dissociation of the C-terminal regulatory domain through oxidation of zinc-coordinating cysteines and zinc release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of Hsp33act.
Figure 2: Sequence alignment of Hsp33 homologs.
Figure 3: Hydrophobic patch on the surface of the Hsp33act dimer.
Figure 4: Oligomeric state of the truncated Hsp33 in solution.
Figure 5: Chaperone activity of Hsp33 derivatives.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Halliwell, B. & Gutteridge, J.M.C. Free radicals in biology and medicine, third edition (Oxford University Press, New York; 1999).

    Google Scholar 

  2. Lander, H.M. An essential role for free radicals and derived species in signal transduction. FASEB J. 11, 118–124 (1997).

    Article  CAS  Google Scholar 

  3. Adler, V., Yin, Z., Tew, K.D. & Ronai, Z. Role of redox potential and reactive oxygen species in stress signaling. Oncogene 18, 6104–6111 (1999).

    Article  CAS  Google Scholar 

  4. Jakob, U., Muse, W., Eser, M. & Bardwell, J.C.A. Chaperone activity with a redox switch. Cell 96, 341–352 (1999).

    Article  CAS  Google Scholar 

  5. Ruddock, L.W. & Klappa, P. Oxidative stress: protein folding with a novel redox switch. Curr. Biol. 3, R400–R402 (1999).

    Article  Google Scholar 

  6. Barbirz, S. Jakob, U. & Glocker, M.O. Mass spectrometry unravels disulfide bond formation as the mechanism that activates a molecular chaperone. J. Biol. Chem. 275, 18759–18766 (2000).

    Article  CAS  Google Scholar 

  7. Hendrickson, W.A. & Ogata, C.M. Phase determination from multiwavelength anomalous diffraction measurements. Methods Enzymol. 276, 494–523 (1997).

    Article  CAS  Google Scholar 

  8. Ormö, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996).

    Article  Google Scholar 

  9. Boggon, T.J., Shan, W.-S., Santagata, S., Myers, S.C. & Shapiro, L. Implication of tubby proteins as transcription factors by structure-based functional analysis. Science 286, 2119–2125 (1999).

    Article  CAS  Google Scholar 

  10. Xu, Z., Horwich, A.L. & Sigler, P.B. The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperone complex. Nature 388, 741–750 (1997).

    Article  CAS  Google Scholar 

  11. Kim, K.K., Kim, R. & Kim, S.-H. Crystal structure of a small heat-shock protein. Nature 394, 595–599 (1998).

    Article  CAS  Google Scholar 

  12. Zhu, X. et al. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606–1614 (1996).

    Article  CAS  Google Scholar 

  13. Leroux, M.R., Melki, R., Gordon, B., Batelier, G. & Candido, E.P. Structure-function studies on small heat shock protein oligomeric assembly and interaction with unfolded polypeptides. J. Biol. Chem. 272, 24646–24656 (1997).

    Article  CAS  Google Scholar 

  14. Chadli, A., Ladjimi, M.M., Baulieu, E.E. & Catelli, M.G. Heat-induced oligomerization of the molecular chaperone Hsp90. Inhibition by ATP and geldanamycin and activation by transition metal oxyanions. J. Biol. Chem. 274, 4133–4139 (1999).

    Article  CAS  Google Scholar 

  15. Schlunegger, M.P., Bennett, M.J. & Eisenberg, D. Oligomer formation by 3D domain swapping: a model for protein assembly and misassembly. Adv. Protein Chem. 50, 61–122 (1997).

    Article  CAS  Google Scholar 

  16. Bennett, M.J. & Eisenberg, D. Refined structure of monomeric diphtheria toxin at 2.3 Å resolution. Protein Sci. 3, 1464–1475 (1994).

    Article  CAS  Google Scholar 

  17. Norledge, B.V. et al. The X-ray structures of two mutant crystallin domains shed light on the evolution of multi-domain proteins. Nature Struct. Biol. 3, 267–274 (1996).

    Article  CAS  Google Scholar 

  18. Milburn, M.V. et al. A novel dimer configuration revealed by the crystal structure at 2.4 Å resolution of human interleukin-5. Nature 363, 172–176 (1993).

    Article  CAS  Google Scholar 

  19. Jakob, U., Eser, M. & Bardwell, J.C.A. Hsp33's redox switch has a novel zinc-binding motif. J. Biol. Chem. 275, 38302–38310 (2000).

    Article  CAS  Google Scholar 

  20. Aslund, F. & Beckwith, J. Bridge over troubled waters: sensing stress by disulfide bond formation. Cell 96, 751–753 (1999).

    Article  CAS  Google Scholar 

  21. Zheng, M., Aslund, F. & Storz, G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279, 1718–1721 (1998).

    Article  CAS  Google Scholar 

  22. Saitoh, M. et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17, 2596–2606 (1998).

    Article  CAS  Google Scholar 

  23. Toledano, M.B. et al. Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell 78, 897–909 (1994).

    Article  CAS  Google Scholar 

  24. Gotoh, Y. & Cooper, J.A. Reactive oxygen species- and dimerization-induced activation of apoptosis signal-regulating kinase 1 in tumor necrosis factor-alpha signal transduction. J. Biol. Chem. 273, 17477–17482 (1998).

    Article  CAS  Google Scholar 

  25. Choi, H.-J. et al. Structural basis of the redox switch in the OxyR transcription factor. Cell in the press (2001).

  26. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  27. Terwilliger, T.C. & Berendzen, J. Automated structure solution for MIR and MAD. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  28. Brünger, A.T. et al. Crystallography & NMR system (CNS): a new software system for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  29. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  30. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  31. Carson, M. Ribbons. Methods Enzymol. 277, 493–505 (1997).

    Article  CAS  Google Scholar 

  32. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)

    Article  Google Scholar 

  33. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced colouring capabilities. J. Mol. Graph. Model. 15, 133–138 (1997).

    Article  Google Scholar 

  34. Hensley, P. Defining the structure and stability of macromolecular assemblies in solution: the re-emergence of analytical ultracentrifugation as a practical tool. Structure 4, 367–373 (1996).

    Article  CAS  Google Scholar 

  35. Gill, S.C. & von Hippel, P.H. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326 (1989).

    Article  CAS  Google Scholar 

  36. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid. Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  37. Barton, G. J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 6, 37–40 (1993).

    Article  CAS  Google Scholar 

  38. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge C. Ogata and the staffs in the NSLS beamline X4A for help with data collection. This work was supported by a national creative research initiatives grant from the ministry of science and technology, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Eon Ryu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SJ., Jeong, DG., Chi, SW. et al. Crystal structure of proteolytic fragments of the redox-sensitive Hsp33 with constitutive chaperone activity. Nat Struct Mol Biol 8, 459–466 (2001). https://doi.org/10.1038/87639

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/87639

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing