Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange


The Hsp70 chaperone activity in protein folding is regulated by ATP-controlled cycles of substrate binding and release. Nucleotide exchange plays a key role in these cycles by triggering substrate release. Structural searches of Hsp70 homologs revealed three structural elements within the ATPase domain: two salt bridges and an exposed loop. Mutational analysis showed that these elements control the dissociation of nucleotides, the interaction with exchange factors and chaperone activity. Sequence variations in the three elements classify the Hsp70 family members into three subfamilies, DnaK proteins, HscA proteins and Hsc70 proteins. These subfamilies show strong differences in nucleotide dissociation and interaction with the exchange factors GrpE and Bag-1.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Variability in nucleotide dissociation rates and utilization of exchanges factors.
Figure 2: Structural differences in the ATPase subdomains.
Figure 3: Mutational alteration of the loop and salt bridges increases nucleotide dissociation rate and decreases chaperone activity of DnaK.


  1. 1

    Hartl, F.U. Nature 381, 571–580 (1996).

    CAS  Article  Google Scholar 

  2. 2

    Bukau, B. & Horwich, A.L. Cell 92, 351–366 (1998).

    CAS  Article  Google Scholar 

  3. 3

    Schmid, D., Baici, A., Gehring, H. & Christen, P. Science 263, 971–973 (1994).

    CAS  Article  Google Scholar 

  4. 4

    Mayer, M.P. et al. Nature Struct. Biol. 7, 586–593 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Theyssen, H., Schuster, H.-P., Bukau, B. & Reinstein, J. J. Mol. Biol. 263, 657–670 (1996).

    CAS  Article  Google Scholar 

  6. 6

    Ha, J.-H. & McKay, D.B. Biochemistry 33, 14625–14635 (1994).

    CAS  Article  Google Scholar 

  7. 7

    Ha, J.-H. & McKay, D.B. Biochemistry 34, 11635–11644 (1995).

    CAS  Article  Google Scholar 

  8. 8

    Slepenkov, S.V. & Witt, S.N. Biochemistry 37, 1015–1024 (1998).

    CAS  Article  Google Scholar 

  9. 9

    Russell, R., Jordan, R. & McMacken, R. Biochemistry 37, 596–607 (1998).

    CAS  Article  Google Scholar 

  10. 10

    Liberek, K., Marszalek, J., Ang, D., Georgopoulos, C. & Zylicz, M. Proc. Natl. Acad. Sci. USA 88, 2874–2878 (1991).

    CAS  Article  Google Scholar 

  11. 11

    Packschies, L. et al. Biochemistry 36, 3417–3422 (1997).

    CAS  Article  Google Scholar 

  12. 12

    Bimston, D. et al. EMBO J. 17, 6871–6878 (1998).

    CAS  Article  Google Scholar 

  13. 13

    Takayama, S. et al. EMBO J. 16, 4887–4896 (1997).

    CAS  Article  Google Scholar 

  14. 14

    Höhfeld, J. & Jentsch, S. EMBO J. 16, 6209–6216 (1997).

    Article  Google Scholar 

  15. 15

    Silberg, J.J. & Vickery, L.E. J. Biol. Chem. 275, 7779–7786 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Harrison, C.J., Hayer-Hartl, M., Di Liberto, M., Hartl, F.-U. & Kuriyan, J. Science 276, 431–435 (1997).

    CAS  Article  Google Scholar 

  17. 17

    Flaherty, K.M., Deluca-Flaherty, C. & McKay, D.B. Nature 346, 623–628 (1990).

    CAS  Article  Google Scholar 

  18. 18

    Buchberger, A. et al. J. Biol. Chem. 270, 16903–16910 (1995).

    CAS  Article  Google Scholar 

  19. 19

    McCarty, J.S. et al. J. Mol. Biol. 256, 829–837 (1996).

    CAS  Article  Google Scholar 

  20. 20

    Schröder, H., Langer, T., Hartl, F.-U. & Bukau, B. EMBO J. 12, 4137–4144 (1993).

    Article  Google Scholar 

  21. 21

    Szabo, A. et al. Proc. Natl. Acad. Sci. USA 91, 10345–10349 (1994).

    CAS  Article  Google Scholar 

  22. 22

    Kunkel, T.A., Bebenek, K. & McClary, J. Methods. Enzymol. 204, 125–139 (1991).

    CAS  Article  Google Scholar 

  23. 23

    Bukau, B. & Walker, G. EMBO J. 9, 4027–4036 (1990).

    CAS  Article  Google Scholar 

  24. 24

    Buchberger, A., Schröder, H., Büttner, M., Valencia, A. & Bukau, B. Nature Struct. Biol. 1, 95–101 (1994).

    CAS  Article  Google Scholar 

  25. 25

    Hesterkamp, T. & Bukau, B. EMBO J. 17, 4818–4828 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Schönfeld, H.-J., Schmidt, D. & Zulauf, M. Progr. Colloid. Polym. Sci. 99, 7–10 (1995).

    Article  Google Scholar 

  27. 27

    Peitsch, M.C. Bio/Technology 13, 658–660 (1995).

    CAS  Google Scholar 

  28. 28

    Peitsch, M.C. Biochem. Soc. Trans. 24, 274–279 (1996).

    CAS  Article  Google Scholar 

  29. 29

    Guex, N. & Peitsch, M.C. Electrophoresis 18, 2714–2723 (1997).

    CAS  Article  Google Scholar 

  30. 30

    McCarty, J.S., Buchberger, A., Reinstein, J. & Bukau, B. J. Mol. Biol. 249, 126–137 (1995).

    CAS  Article  Google Scholar 

Download references


We thank J. Höhfeld and R. Morimoto for plasmids expressing Bag-1M and Hsc70; A. Valencia and A. Buchberger for design and cloning of dnaK-K55A; T. Hesterkamp, A. Hoelz and T. Laufen for helpful discussions. This work was supported by grants of the DFG to J.R., and the DFG (Graduiertenkolleg Biochemie der Enzyme; Leibniz program) and the Fonds der Chemischen Industrie to B.B.

Author information



Corresponding author

Correspondence to Bernd Bukau.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brehmer, D., Rüdiger, S., Gässler, C. et al. Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nat Struct Mol Biol 8, 427–432 (2001).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing