Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange

Abstract

The Hsp70 chaperone activity in protein folding is regulated by ATP-controlled cycles of substrate binding and release. Nucleotide exchange plays a key role in these cycles by triggering substrate release. Structural searches of Hsp70 homologs revealed three structural elements within the ATPase domain: two salt bridges and an exposed loop. Mutational analysis showed that these elements control the dissociation of nucleotides, the interaction with exchange factors and chaperone activity. Sequence variations in the three elements classify the Hsp70 family members into three subfamilies, DnaK proteins, HscA proteins and Hsc70 proteins. These subfamilies show strong differences in nucleotide dissociation and interaction with the exchange factors GrpE and Bag-1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variability in nucleotide dissociation rates and utilization of exchanges factors.
Figure 2: Structural differences in the ATPase subdomains.
Figure 3: Mutational alteration of the loop and salt bridges increases nucleotide dissociation rate and decreases chaperone activity of DnaK.

Similar content being viewed by others

References

  1. Hartl, F.U. Nature 381, 571–580 (1996).

    Article  CAS  Google Scholar 

  2. Bukau, B. & Horwich, A.L. Cell 92, 351–366 (1998).

    Article  CAS  Google Scholar 

  3. Schmid, D., Baici, A., Gehring, H. & Christen, P. Science 263, 971–973 (1994).

    Article  CAS  Google Scholar 

  4. Mayer, M.P. et al. Nature Struct. Biol. 7, 586–593 (2000).

    Article  CAS  Google Scholar 

  5. Theyssen, H., Schuster, H.-P., Bukau, B. & Reinstein, J. J. Mol. Biol. 263, 657–670 (1996).

    Article  CAS  Google Scholar 

  6. Ha, J.-H. & McKay, D.B. Biochemistry 33, 14625–14635 (1994).

    Article  CAS  Google Scholar 

  7. Ha, J.-H. & McKay, D.B. Biochemistry 34, 11635–11644 (1995).

    Article  CAS  Google Scholar 

  8. Slepenkov, S.V. & Witt, S.N. Biochemistry 37, 1015–1024 (1998).

    Article  CAS  Google Scholar 

  9. Russell, R., Jordan, R. & McMacken, R. Biochemistry 37, 596–607 (1998).

    Article  CAS  Google Scholar 

  10. Liberek, K., Marszalek, J., Ang, D., Georgopoulos, C. & Zylicz, M. Proc. Natl. Acad. Sci. USA 88, 2874–2878 (1991).

    Article  CAS  Google Scholar 

  11. Packschies, L. et al. Biochemistry 36, 3417–3422 (1997).

    Article  CAS  Google Scholar 

  12. Bimston, D. et al. EMBO J. 17, 6871–6878 (1998).

    Article  CAS  Google Scholar 

  13. Takayama, S. et al. EMBO J. 16, 4887–4896 (1997).

    Article  CAS  Google Scholar 

  14. Höhfeld, J. & Jentsch, S. EMBO J. 16, 6209–6216 (1997).

    Article  Google Scholar 

  15. Silberg, J.J. & Vickery, L.E. J. Biol. Chem. 275, 7779–7786 (2000).

    Article  CAS  Google Scholar 

  16. Harrison, C.J., Hayer-Hartl, M., Di Liberto, M., Hartl, F.-U. & Kuriyan, J. Science 276, 431–435 (1997).

    Article  CAS  Google Scholar 

  17. Flaherty, K.M., Deluca-Flaherty, C. & McKay, D.B. Nature 346, 623–628 (1990).

    Article  CAS  Google Scholar 

  18. Buchberger, A. et al. J. Biol. Chem. 270, 16903–16910 (1995).

    Article  CAS  Google Scholar 

  19. McCarty, J.S. et al. J. Mol. Biol. 256, 829–837 (1996).

    Article  CAS  Google Scholar 

  20. Schröder, H., Langer, T., Hartl, F.-U. & Bukau, B. EMBO J. 12, 4137–4144 (1993).

    Article  Google Scholar 

  21. Szabo, A. et al. Proc. Natl. Acad. Sci. USA 91, 10345–10349 (1994).

    Article  CAS  Google Scholar 

  22. Kunkel, T.A., Bebenek, K. & McClary, J. Methods. Enzymol. 204, 125–139 (1991).

    Article  CAS  Google Scholar 

  23. Bukau, B. & Walker, G. EMBO J. 9, 4027–4036 (1990).

    Article  CAS  Google Scholar 

  24. Buchberger, A., Schröder, H., Büttner, M., Valencia, A. & Bukau, B. Nature Struct. Biol. 1, 95–101 (1994).

    Article  CAS  Google Scholar 

  25. Hesterkamp, T. & Bukau, B. EMBO J. 17, 4818–4828 (1998).

    Article  CAS  Google Scholar 

  26. Schönfeld, H.-J., Schmidt, D. & Zulauf, M. Progr. Colloid. Polym. Sci. 99, 7–10 (1995).

    Article  Google Scholar 

  27. Peitsch, M.C. Bio/Technology 13, 658–660 (1995).

    CAS  Google Scholar 

  28. Peitsch, M.C. Biochem. Soc. Trans. 24, 274–279 (1996).

    Article  CAS  Google Scholar 

  29. Guex, N. & Peitsch, M.C. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  Google Scholar 

  30. McCarty, J.S., Buchberger, A., Reinstein, J. & Bukau, B. J. Mol. Biol. 249, 126–137 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Höhfeld and R. Morimoto for plasmids expressing Bag-1M and Hsc70; A. Valencia and A. Buchberger for design and cloning of dnaK-K55A; T. Hesterkamp, A. Hoelz and T. Laufen for helpful discussions. This work was supported by grants of the DFG to J.R., and the DFG (Graduiertenkolleg Biochemie der Enzyme; Leibniz program) and the Fonds der Chemischen Industrie to B.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Bukau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brehmer, D., Rüdiger, S., Gässler, C. et al. Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nat Struct Mol Biol 8, 427–432 (2001). https://doi.org/10.1038/87588

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/87588

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing