Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and lipid transport mechanism of a StAR-related domain

Abstract

The steroidogenic acute regulatory protein (StAR) regulates acute steroidogenesis in the adrenal cortex and gonads by promoting the translocation of cholesterol to the mitochondrial inner membrane where the first step in steriod biosynthesis is catalyzed. StAR-related lipid transfer (START) domains occur in proteins involved in lipid transport and metabolism, signal transduction, and transcriptional regulation. The 2.2 Å resolution crystal structure of the START domain of human MLN64 reported here reveals an α/β fold built around a U-shaped incomplete β-barrel. The interior of the protein encompasses a 26 × 12 × 11 Å hydrophobic tunnel that is large enough to bind a single cholesterol molecule. The StAR and MLN64 START domains bind 1 mole of 14C cholesterol per mole of protein in vitro. Based on the START domain structure and cholesterol binding stoichiometry, it is proposed that StAR acts by shuttling cholesterol molecules one at a time through the intermembrane space of the mitochondrion.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative START domain containing proteins, based on information obtained from the SMART database2.
Figure 2: Cholesterol binding to MLN64 and StAR.
Figure 3: Structure determination.
Figure 4: Overall structure of the START domain of MLN64.
Figure 5: Cutaway view of the molecular surface of the START domain.
Figure 6: Structure based alignment of representative START domain sequences.
Figure 7: Model of cholesterol bound in the START domain tunnel.

Similar content being viewed by others

References

  1. Ponting, C.P. & Aravind, L. START: a lipid-binding domain in StAR, HD-ZIP and signaling proteins. Trends Biochem. Sci. 24, 130–132 (1999).

    Article  CAS  Google Scholar 

  2. Schultz, J., Milpetz, F., Bork, P. & Ponting, C.P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA 95, 5857– 5864 (1998).

    Article  CAS  Google Scholar 

  3. Clark, B.J., Wells, J., King, S.R. & Stocco, D.M. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J. Biol. Chem. 269 , 28314–28322 (1994).

    CAS  PubMed  Google Scholar 

  4. Sugawara, T. et al. Human steroidogenic acute regulatory protein: functional activity in COS-1 cells, tissue-specific expression, and mapping of the structural gene to 8p11.2 and a pseudogene to chromosome 13. Proc. Natl. Acad. Sci. USA 92, 4778–4782 (1995).

    Article  CAS  Google Scholar 

  5. Lin, D. et al. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 267, 1828– 1831 (1995).

    Article  CAS  Google Scholar 

  6. Caron, K.M. et al. Targeted disruption of the mouse gene encoding steroidogenic acute regulatory protein provides insights into congenital lipoid adrenal hyperplasia. Proc. Natl. Acad. Sci. USA 94, 11540–11545 (1997).

    Article  CAS  Google Scholar 

  7. Waterman, M.R. A rising StAR: An essential role in cholesterol transport. Science 267, 1780–1781 ( 1995).

    Article  CAS  Google Scholar 

  8. Stocco, D.M. & Clark, B.J. Regulation of the acute production of steroids in steroidogenic cells. Endocrine Rev. 17, 221–244 (1996).

    CAS  Google Scholar 

  9. Bose, H.S. et al. The pathophysiology and genetics of congential lipoid adrenal hyperplasia. New Engl. J. Med. 335, 1870 –1878 (1996).

    Article  CAS  Google Scholar 

  10. Miller, W.L. & Strauss, J.F. III . Molecular pathology and mechanism of action of the steroidogenic acute regulatory protein, StAR . J. Steroid Biochem. Mol. Biol. 69, 131 –141 (1999).

    Article  CAS  Google Scholar 

  11. Stocco, D.M. An update on the mechanism of action of the steroidogenic acute regulatory (StAR) protein. Exp. Clin. Endocrinol. Diabetes 107 , 229–235 (1999).

    Article  CAS  Google Scholar 

  12. Moog-Lutz, C. et al. MLN64 exhibits homology with the steroidogenic acute regulatory protein (STAR) and is over-expressed in human breast carcinomas. Int. J. Cancer. 71, 183–191 (1997).

    Article  CAS  Google Scholar 

  13. Watari, H. et al. MLN64 contains a domain with homology to the steroidogenic acute regulatory protein (StAR) that stimulates steroidogenesis. Proc. Natl. Acad. Sci. USA 94, 8462– 8467 (1997).

    Article  CAS  Google Scholar 

  14. Homma, Y. & Emori, Y. A dual functional signal mediator showing RhoGAP and phospholipase C-δ stimulating activities. EMBO J. 14, 286–291 ( 1995).

    Article  CAS  Google Scholar 

  15. Raya, A., Revert, F., Navarro, S. & Saus, J. Characterization of a novel type of serine/threonine kinase that specifically phosphorylates the human Goodpasture antigen. J. Biol. Chem. 274, 12642–12649 (1999).

    Article  CAS  Google Scholar 

  16. Masucci, J.D. et al. The homeobox gene GLABRA 2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana. Development 122, 1253–1260 (1996).

    CAS  PubMed  Google Scholar 

  17. Arakane, F. et al. Steroidogenic acute regulatory protein (StAR) retains activity in the absence of its mitochondrial import sequence: implications for the mechanism of StAR action. Proc. Natl. Acad. Sci. USA 93, 13731–13736 (1996).

    Article  CAS  Google Scholar 

  18. Arakane, F. et al. The mechanism of action of steroidogenic acute regulatory protein (StAR). StAR acts on the outside of mitochondria to stimulate steroidogenesis . J. Biol. Chem. 273, 16339– 16445 (1998).

    Article  CAS  Google Scholar 

  19. Bose, H.S., Whittal, R.M., Baldwin, M.A. & Miller, W.L. The active form of the steroidogenic acute regulatory protein, StAR, appears to be a molten globule. Proc. Natl. Acad. Sci. USA 96, 7250–7255 (1999).

    Article  CAS  Google Scholar 

  20. Gajhede, M. et al. X-ray and NMR structure of Bet v 1, the origin of birch pollen allergy. Nature Struct. Biol. 3, 1040– 1045 (1996).

    Article  CAS  Google Scholar 

  21. Gibrat, J.-F., Madej, T. & Bryant, S.H. Surprising similarities in structure comparison. Curr. Opin. Struct. Biol. 6, 377–385 (1996).

    Article  CAS  Google Scholar 

  22. Flower, D.R. The lipocalin protein family: structure and function. Biochem. J. 318, 1–14 ( 1996).

    Article  CAS  Google Scholar 

  23. Bose, H.S., Baldwin, M.A. & Miller, W.L. Incorrect folding of steroidogenic acute regulatory protein (StAR) in congenital adrenal lipoid hyperplasia. Biochemistry 37, 9768–9775 ( 1998).

    Article  CAS  Google Scholar 

  24. Kallen, C.B. et al. Steroidogenic acute regulatory protein (StAR) is a sterol transfer protein. J. Biol. Chem. 273, 26285 –26288 (1998).

    Article  CAS  Google Scholar 

  25. Westerman, J. et al. Identification of the lipid-binding site of phosphatidylcholine-transfer protein with phosphatidylcholine analogs containing photoactivatable carbene precursors. Eur. J. Biochem. 132, 441– 449 (1983).

    Article  CAS  Google Scholar 

  26. Garciadagger, F.L. et al. NMR structure of the sterol carrier protein-2: implications for the biological role. J. Mol. Biol. 295, 595–603 (2000).

    Article  Google Scholar 

  27. Reese-Wagoner, A., Thompson, J. & Banaszak, L. Structural properties of the adipocyte lipid binding protein. Biochim. Biophys. Acta 1411, 106 –116 (1999).

    Article  Google Scholar 

  28. Sha, B. & Luo, M. PI transfer protein: the specific recognition of phospholipids and its functions. Biochim. Biophys. Acta 1411, 268–277 (1999).

    Article  Google Scholar 

  29. Derman, A.O, Puziss, J.W., Bassford, P.J. Jr. & Beckwith, J. A signal sequence is not required for protein export in prlA mutants of Escherichia coli. EMBO J. 12, 879–888 ( 1993).

    Article  CAS  Google Scholar 

  30. Arakane, F. et al. Phosphorylation of steroidogenic acute regulatory protein (StAR) modulates its steroidogenic activity. J. Biol. Chem. 272, 32656–32662 (1997 ).

    Article  CAS  Google Scholar 

  31. Hurley, J.H. & Misra, S. Signaling and subcellular targeting by membrane binding domains. Annu. Rev. Biophys. Biomol. Struct. 29, in the press.

  32. Renaud, J-P. et al. Crystal structure of the RAR-γ ligand-binding domain bound to all-trans retinoic acid. Nature 378, 681–689 (1995).

    Article  CAS  Google Scholar 

  33. Williams, S.P. & Sigler, P.B. Atomic structure of progesterone complexed with its receptor. Nature 393, 392–396 (1998).

    Article  CAS  Google Scholar 

  34. Shiau, A.K., et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95, 927–937 (1998).

    Article  CAS  Google Scholar 

  35. Nolte, R.T. et al. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature 395 , 137–143 (1998).

    Article  CAS  Google Scholar 

  36. Sheffield, P., Garrard, S. & Derewenda, Z. Overcoming expression and purification problems of RhoGDI using a family of parallel expression vectors. Protein Expr. Purification 15, c34–39 ( 1999).

    Article  Google Scholar 

  37. Okamura, et al. A porcine homolog of the major secretory protein of human epididymis, HE1, specifically binds cholesterol. Biochim. Biophys. Acta 1438, 377–387 (1999).

    Article  CAS  Google Scholar 

  38. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  Google Scholar 

  39. Terwilliger, T.C. & Berendzen, J. Automated structure solution for MIR and MAD. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  40. Abrahams, J.P. & Leslie, A.G.W. Acta Crystallogr. D 52, 30–24 ( 1996).

    Article  CAS  Google Scholar 

  41. Jones, T.A., Zou, J.Y. & Cowan, S.W & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  42. Brunger, A.T. et al. Crystallography & NMR system (CNS): a new software system for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 ( 1998).

    Article  CAS  Google Scholar 

  43. Laskowski, R.A. SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J. Mol. Graphics 13, 323– 330 (1995).

    Article  CAS  Google Scholar 

  44. Christopher, J.A. Spock. http://quorum.tamu.edu/jon/spock/

Download references

Acknowledgements

We thank D. Stocco, C. Ponting and H. Bernstein for discussions; C. Ogata, R. Abramowitz, Z. Dauter, K. R. Rajashankar, J. Ho, and S. Misra for assistance with data collection at beamlines X4A and X9B, National Synchrotron Light Source, Brookhaven National Laboratories; A. Hickman for comments on the manuscript, and Z. Derewenda for providing expression vectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Hurley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsujishita, Y., Hurley, J. Structure and lipid transport mechanism of a StAR-related domain. Nat Struct Mol Biol 7, 408–414 (2000). https://doi.org/10.1038/75192

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75192

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing