Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

RmlC, the third enzyme of dTDP-L-rhamnose pathway, is a new class of epimerase

Abstract

Deoxythymidine diphosphate (dTDP)-l-rhamnose is the precursor of l-rhamnose, a saccharide required for the virulence of some pathogenic bacteria. dTDP-l-rhamnose is synthesized from glucose-1-phosphate and deoxythymidine triphosphate (dTTP) via a pathway involving four distinct enzymes. This pathway does not exist in humans and the enzymes involved in dTDP-l-rhamnose synthesis are potential targets for the design of new therapeutic agents. Here, the crystal structure of dTDP-6-deoxy-d-xylo-4-hexulose 3,5 epimerase (RmlC, EC5.1.3.13) from Salmonella enterica serovar Typhimurium was determined. The third enzyme of the rhamnose biosynthetic pathway, RmlC epimerizes at two carbon centers, the 3 and 5 positions of the sugar ring. The structure was determined by multiwavelength anomalous diffraction to a resolution of 2.17 Å. RmlC is a dimer and each monomer is formed mainly from two β-sheets arranged in a β-sandwich. The structure of a dTDP-phenol–RmlC complex shows the substrate-binding site to be located between the two β-sheets; this site is formed from residues of both monomers. Sequence alignments of other RmlC enzymes confirm that this region is very highly conserved. The enzyme is distinct structurally from other epimerases known and thus, is the first example of a new class of carbohydrate epimerase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, The biosynthetic pathway of rhamnose.
Figure 2: Structure of RmlC.
Figure 3: a, Stereo view of the electron density for dTDP-phenol in monomer A.
Figure 4: a, Alignment of 19 RmlC sequences.

Similar content being viewed by others

References

  1. Jiang, X.-M., Neal, B., Santiago, F., Lee, S.J., Romana, L.K. & Reeves, P.R. Mol. Microbiol. 5, 695–713 (1991).

    Article  CAS  Google Scholar 

  2. Fallarino, A., Mavrangelos, C., Stroeher, U.H. & Manning, P.A. J. Bacteiol. 179, 2147–2153 (1997).

    Article  CAS  Google Scholar 

  3. Erbing, C., Svensson, S. & Hammarstrom, S. Carbohydr. Res. 44, 259–265 (1975).

    Article  CAS  Google Scholar 

  4. Joiner, K.A. Annu. Rev. Microbio. 42, 201–230 (1988).

    Article  CAS  Google Scholar 

  5. Chiang, S. L. & Mekalanos, J.J. Infect. Immun. 67, 976–980 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Burns, S.M. & Hull, S.I. Infect. Immun. 66, 4244–4253 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Charland, N., Harel, J., Kobisch, M., Lacasse, S. & Gottschalk, M. Microbiology 144, 325–332 (1998).

    Article  CAS  Google Scholar 

  8. Lutticken, R., Temme, N., Hahn, G., Bartelheimer, E.W. Infection 14, 181–185 (1986).

    Article  CAS  Google Scholar 

  9. Michalek, S.M., et al. Protides Biol. Fluids Proc. Colloq. 32, 47–52 (1984).

    Article  CAS  Google Scholar 

  10. Stinson, M.W., Nisengard, R.J. & Bergey, E.J. Infect. Immun. 27, 604–613 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. McNeil, M., Daffé, M. & Brennan, P.J. J. Biol. Chem. 265, 18200–18206 (1990).

    CAS  PubMed  Google Scholar 

  12. Shibaev, V.N. Adv. Carbohydr. Chem. Biochem. 44, 277–339 (1986).

    Article  CAS  Google Scholar 

  13. Köplin, R., Wang, G., Hötte, B., Priefer, U.B. & Pühler, A. J. Bacteriol. 175, 7786–7792 (1993).

    Article  Google Scholar 

  14. Holm, L. & Sander, C. Proteins 19, 165–173 (1994).

    Article  CAS  Google Scholar 

  15. Cleasby, A., et al. Nature Struct Biol. 3, 470–479 (1996).

    Article  CAS  Google Scholar 

  16. Liu, Y. et al. Biochemistry 36, 10675–10684 (1997).

    Article  CAS  Google Scholar 

  17. Kopp, J., Kopriva, S. Süss, K-H. & Schulz, G.E. J. Mol. Biol. 287, 761–771 (1999).

    Article  CAS  Google Scholar 

  18. Rizzi, M. et al. Structure 6, 1453–1465 (1999).

    Article  Google Scholar 

  19. Johnson, A.E. & Tanner, M.E. Biochemistry. 37, 5746–5754 (1998).

    Article  CAS  Google Scholar 

  20. Giraud, M.-F., Gordon, F., Whitfield, C., Messner, P., McMahon, S. & Naismith, J. Acta Crystallogr. D 55, 706–708 (1999).

    Article  CAS  Google Scholar 

  21. Otwinowski, Z. Methods Enzymol. 276, 307–326 (1991).

    Article  Google Scholar 

  22. Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  23. Cowtan, K. Joint CCP4 and ESF-EACBM newsletter on protein crystallography. 31, 34–38 (1994).

    Google Scholar 

  24. Kleywegt, G.J. CCP4/ESF-EACBM Newsletter on Protein Crystallography 32, 32–35 (1996).

    Google Scholar 

  25. Jones, T.A., Zou, J.-H., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  26. Brünger A.T., et al. Acta. Crystallogr. D 54, 905–21 (1998).

    Article  Google Scholar 

  27. Laskowski, R.A., MacArthur, M.W., Moss, D.M. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  28. Zhao, Y.X. & Thorson, A. J. Org. Chem. 63, 7568–7572 (1998).

    Article  CAS  Google Scholar 

  29. Esnouf, R.M. J. Mol. Graph. Model. 15, 132–133 (1997).

    Article  CAS  Google Scholar 

  30. Merritt, E.A. & Murphy, M.E.P. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

  31. Bacon, D. & Anderson, W.F.J. Mol. Graph. 6, 219–220 (1988)

    Article  Google Scholar 

  32. Ko, T.P., Day, J. & Macpherson, A. Acta Crystallogr. D 56, 411–420 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wellcome Trust. The use of the CCLRC Daresbury Laboratory, UK, and ESRF-Grenoble facilities is gratefully acknowledged. We thank D. Sanders and W. Blankenfeldt for assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Naismith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giraud, MF., Leonard, G., Field, R. et al. RmlC, the third enzyme of dTDP-L-rhamnose pathway, is a new class of epimerase. Nat Struct Mol Biol 7, 398–402 (2000). https://doi.org/10.1038/75178

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing