Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stability and cooperativity of individual tertiary contacts in RNA revealed through chemical denaturation

Abstract

For proteins, understanding tertiary interactions involved in local versus global unfolding has become increasingly important for understanding the nature of the native state ensemble, the mechanisms of unfolding, and the stability of both the native and intermediate states in folding. In this work we have addressed related questions with respect to RNA structure by combining chemical denaturation and hydroxyl radical footprinting methods. We have determined unfolding isotherms for each of 26 discrete sites of protection located throughout the Tetrahymena thermophila group I ribozyme. The cooperativity of folding, m-value, and the free energy, ΔG°N−U, associated with formation of each tertiary contact was determined by analysis of the isotherms. The ΔG°N−U values measured in this study vary from 1.7 ± 0.2 to 7.6 ± 1.2 kcal mol−1. Thus, the stability of these discrete tertiary contacts vary by almost 104. In addition, an intradomain contact and three interdomain contacts show high cooperativity (m-values of 1.1 ± 0.2 to 1.7 ± 0.3 kcal mol−1 M−1) indicating that these contacts exhibit global cooperatively in their folding behavior. This new approach to examining RNA stability provides an exciting comparison to our understanding of protein structure and folding mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Urea-induced unfolding of the Tetrahymena ribozyme.
Figure 2: Free energy and m-values derived for individual sites in the Tetrahymena ribozyme.
Figure 3: Individual site free energy and m-values derived for the isolated P4-P6 domain.

Similar content being viewed by others

References

  1. Kay, M.S. & Baldwin, R.L. Nature Struct. Biol. 3, 439–445 (1996).

    Article  CAS  Google Scholar 

  2. Llinas, M., Gillespie, B., Dahlquist, F.W. & Marqusee, S. Nature Struct. Biol. 6, 1072–1078 (1999).

    Article  CAS  Google Scholar 

  3. Chamberlain, A.K., Handel, T.M. & Marqusee, S. Nature Struct. Biol. 3, 782–787 (1996).

    Article  CAS  Google Scholar 

  4. Milne J.S., Xu Y., Mayne, L.C. & Englander S.W. J. Mol. Biol. 290, 811–822 (1999).

    Article  CAS  Google Scholar 

  5. Bai, Y., Milne, J.S., Mayne, L. & Englander, S.W. Proteins 20, 4–14 (1994).

    Article  CAS  Google Scholar 

  6. Silverman, S.K. & Cech, T.R. Biochemistry 38, 8691–8702 (1999).

    Article  CAS  Google Scholar 

  7. Doherty, E.A. & Doudna, J.A. Biochemistry 36, 3159–3169 (1997).

    Article  CAS  Google Scholar 

  8. Laggerbauer, B., Murphy, F.L. & Cech, T.R. EMBO J. 13, 2669–2676 (1994).

    Article  CAS  Google Scholar 

  9. Rook, M.S., Treiber, D.K. & Williamson, J.R. J. Mol. Biol. 281, 609–620 (1998).

    Article  CAS  Google Scholar 

  10. Doherty, E.A., Herschlag, D. & Doudna, J.A. Biochemistry 38, 2982–2990 (1999).

    Article  CAS  Google Scholar 

  11. Szewczak, A.A., Podell, E.R., Bevilacqua, P.C. & Cech, T.R. Biochemistry 37, 11162–11170 (1998).

    Article  CAS  Google Scholar 

  12. Cate, J.H. et al. Science 273, 1678–1685 (1996).

    Article  CAS  Google Scholar 

  13. Golden, B.L., Gooding, A.R., Podell, E.R. & Cech, T.R. Science 282, 259–264 (1998).

    Article  CAS  Google Scholar 

  14. Lehnert, V., Jaeger, L., Michel, F. & Westhof, E. Chem. Biol. 3, 993–1009 (1996).

    Article  CAS  Google Scholar 

  15. Greene, R.F. & Pace, C.N. J. Biol. Chem. 249, 5388–5393 (1974).

    CAS  PubMed  Google Scholar 

  16. Schellman, J.A. Annu. Rev. Biophys. Biophys. Chem. 16, 115–137 (1987).

    Article  CAS  Google Scholar 

  17. Santoro, M.M. & Bolen, D.W. Biochemistry 31, 4901–4907 (1992).

    Article  CAS  Google Scholar 

  18. Tanford, C. Adv. Protein Chem. 24, 1–95 (1970).

    Article  CAS  Google Scholar 

  19. Shelton, V.M., Sosnick, T.R. & Pan, T. Biochemistry, 38, 16831–16839 (1999).

    Article  CAS  Google Scholar 

  20. Latham, J.A. & Cech, T.R. Science 245, 276–282 (1989).

    Article  CAS  Google Scholar 

  21. Tullius, T. D., Dombroski, B. A., Churchill, M. E. & Kam, L. Methods Enzymol. 155, 537–558 (1987).

    Article  CAS  Google Scholar 

  22. Dixon, W. J., et al. Methods Enzymol. 208, 380–413 (1991).

    Article  CAS  Google Scholar 

  23. Sclavi, B., Sullivan, M., Chance, M.R., Brenowitz, M. & Woodson, S.A. Science 279, 1940–1943 (1998).

    Article  CAS  Google Scholar 

  24. Downs, W.D. & Cech, T.R. Biochemistry 29, 5605–5613 (1990).

    Article  CAS  Google Scholar 

  25. Myers, J.K., Pace, C.N. & Scholtz, J.M. Protein Sci. 4, 2138–2148 (1995).

    Article  CAS  Google Scholar 

  26. Pan, T. & Sosnick, T.R. Nature Struct. Biol. 4, 931–938 (1997).

    Article  CAS  Google Scholar 

  27. Weeks, K.M. & Cech, T.R. Science 271, 345–348 (1996).

    Article  CAS  Google Scholar 

  28. Celander, D.W. & Cech, T.R. Science 251, 401–407 (1991).

    Article  CAS  Google Scholar 

  29. Sclavi, B., Sullivan, M., Chance, M.R., Brenowitz, M. & Woodson, S.A. J. Mol. Biol. 266, 144–159 (1997).

    Article  CAS  Google Scholar 

  30. Wu, M. & Tinoco, I. Proc. Natl. Acad. Sci. USA 95, 11555–11560 (1998).

    Article  CAS  Google Scholar 

  31. Pan, J., Thirumalai, D. & Woodson, S.A. Proc. Natl. Acad. Sci. USA 96, 6149–6154 (1999).

    Article  CAS  Google Scholar 

  32. Sadqi, M. et al. Biochemistry, 38, 8899–8906 (1999).

    Article  CAS  Google Scholar 

  33. Latham, J.A., Zaug, A.J. & Cech, T.R. Methods Enzymol. 181, 558–569 (1990).

    Article  CAS  Google Scholar 

  34. Zaug, A.J., Grosshans, C.A. & Cech, T.R. Biochemistry 27, 8924–8931 (1988).

    Article  CAS  Google Scholar 

  35. Lingner, J. & Keller, W. Nucleic Acids Res. 21, 2917–2920 (1993).

    Article  CAS  Google Scholar 

  36. Emerick, V.L. & Woodson, S.A. Proc. Natl. Acad. Sci. USA 91, 9675–9679 (1994).

    Article  CAS  Google Scholar 

  37. Ralston, C.Y. et.al. Methods Enzymol. 317, 353–368 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Woodson for providing the DNA templates used for transcription of the Tetrahymena ribozyme and the P4-P6 subdomain of the ribozyme. We also thank M. Deras and J. Swisher for advice and help in the preparation and handling of RNA samples. This work was supported by grants from the NIH Institute for General Medical Sciences and the Biomedical Technology Program of the Division of Research Resources. The National Synchrotron Light Source at Brookhaven National Laboratory is supported by the Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Chance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ralston, C., He, Q., Brenowitz, M. et al. Stability and cooperativity of individual tertiary contacts in RNA revealed through chemical denaturation. Nat Struct Mol Biol 7, 371–374 (2000). https://doi.org/10.1038/75139

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75139

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing