Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy

Abstract

The structures of functional peptides corresponding to the predicted channel-lining M2 segments of the nicotinic acetylcholine receptor (AChR) and of a glutamate receptor of the NMDA subtype (NMDAR) were determined using solution NMR experiments on micelle samples, and solid-state NMR experiments on bilayer samples. Both M2 segments form straight transmembrane α-helices with no kinks. The AChR M2 peptide inserts in the lipid bilayer at an angle of 12° relative to the bilayer normal, with a rotation about the helix long axis such that the polar residues face the N-terminal side of the membrane, which is assigned to be intracellular. A model built from these solid-state NMR data, and assuming a symmetric pentameric arrangement of M2 helices, results in a funnel-like architecture for the channel, with the wide opening on the N-terminal intracellular side.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a–h, Single-channel recordings from recombinant M2 peptides in lipid bilayers.
Figure 2: Solution and solid-state 2D NMR spectra of AchR M2 peptides.
Figure 4: Superposition of the backbone heavy atoms for the 10 lowest energy structures of a, AChR M2 and b, NMDAR M2, determined by solution NMR in DPC micelles.
Figure 3: One-dimensional solid-state 15N chemical-shift NMR spectra of M2 peptides in oriented lipid bilayers.
Figure 5: a–c, Top (a) and side (b,c) stereo views of a model of the AChR M2 funnel-like pentameric bundle.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Colquhoun, D. & Sakmann, B. From muscle endplate to brain synapses: a short history of synapses and agonist-activated ion channels. Neuron 20, 381–387 ( 1998).

    Article  CAS  Google Scholar 

  2. Lena, C. & Changeux, J. P. Pathological mutations of nicotinic receptors and nicotine-based therapies for brain disorders. Curr. Opin. Neurobiol. 7, 674–682 (1997).

    Article  CAS  Google Scholar 

  3. Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 (1994).

    Article  CAS  Google Scholar 

  4. Unwin, N. Acetylcholine receptor channel imaged in the open state. Nature 373, 37–43 ( 1995).

    Article  CAS  Google Scholar 

  5. Oiki, S., Madison, V. & Montal, M. Bundles of amphipathic transmembrane α-helices as a structural motif for ion-conducting channel proteins: studies on sodium channels and acetylcholine receptors. Proteins 8, 226–236 (1990).

    Article  CAS  Google Scholar 

  6. Kuner, T., Wollmuth, L.P., Karlin, A., Seeburg, P.H. & Sakmann, B. Structure of the NMDA receptor channel M2 segment inferred from accessibility of substituted cysteines. Neuron 17, 343–352 ( 1996).

    Article  CAS  Google Scholar 

  7. Hollmann, M., Maron, C. & Heinemann, S. N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron 13, 1331–1343 (1994).

    Article  CAS  Google Scholar 

  8. Oblatt-Montal, M., Buhler, L.K., Iwamoto, T., Tomich, J.M. & Montal, M. Synthetic peptides and four-helix bundle proteins as model systems for the pore-forming structure of channel proteins. The transmembrane segment M2 of the nicotinic cholinergic receptor channel is a key pore lining structure. J. Biol. Chem. 268, 14601–14607 (1993).

    CAS  PubMed  Google Scholar 

  9. Opella, S. J. NMR and membrane proteins. Nat. Struct. Biol., NMR Suppl. 4, 845–848 (1997).

    CAS  Google Scholar 

  10. Kay, L.E., Ikura, M., Tschudin, R. & Bax, A. Three-dimensional triple resonance NMR spectroscopy of isotopically enriched proteins. J. Magn. Reson. 89, 496–514 (1990).

    CAS  Google Scholar 

  11. Bax, A. & Ikura, M. An efficient 3D NMR technique for correlating the proton and 15N backbone amide resonance with the alpha-carbon of the preceding residue in uniformly 15N/13C enriched proteins. J. Biomol. NMR 1, 99–104 (1991).

    Article  CAS  Google Scholar 

  12. Wuthrich, K. NMR of proteins and nucleic acids (Wiley-Interscience, New York; 1986).

    Book  Google Scholar 

  13. Opella, S.J. & Stewart, P.L. Solid-state nuclear magnetic resonance structural studies of proteins. Methods Enzymol. 176 , 242–275 (1989);.

  14. Ketchem, R.R., Hu, W. & Cross, T. A. High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261, 1457–1460 (1993).

    Article  CAS  Google Scholar 

  15. Marassi, F. M. et al. Dilute spin-exchange assignment of solid-state NMR spectra of oriented proteins: acetylcholine M2 in bilayers. J. Biomol. NMR, in the press (1999).

  16. Doyle D.A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  Google Scholar 

  17. Akabas, M.H., Kaufmann, C., Archdeacon, P. & Karlin, A. Identification of acetylcholine receptor channel lining residues in the entire M2 segment of the alpha subunit. Neuron 13, 919–927 (1994).

    Article  CAS  Google Scholar 

  18. Galzi, J.L. et al. Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 359, 500–505 (1992).

    Article  CAS  Google Scholar 

  19. Charnet, P. et al. An open channel blocker interacts with adjacent turns of α-helices in the nicotinic acetylcholine receptor. Neuron 4, 87–95 (1990).

    Article  CAS  Google Scholar 

  20. Gesell, J.J., Opella, S.J., Sun, W. & Montal, M. in Proc. 6th Symp. Protein Soc. p.52 (San Diego, CA, July 25–29, 1992; abstr. s33).

  21. Iwamoto, T., Grove, A., Montal, M. O., Montal, M. & Tomich, J.M. Chemical synthesis and characterization of peptides and oligomeric proteins designed to form transmembrane ion channels. Int. J. Pept. Protein Res. 43, 597– 607 (1994).

    Article  CAS  Google Scholar 

  22. Bax, A., Griffey, R.H. & Hawkins B.L. Correlation of proton and nitrogen-15 chemical shifts by multiple quantum NMR. J. Magn. Reson. 55, 301–315 (1983).

    CAS  Google Scholar 

  23. Piotto, M., Saudek, V. & Sklenar, V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR, 2, 661–665 (1992).

    Article  CAS  Google Scholar 

  24. Clore, G.M., Nilges, M., Sukumaran, D., Brunger, A., Karplus, M. & Gronenborn, A. The three-dimensional spectra of α1-purothiamin in solution: combined use of nuclear magnetic resonance, distance geometry and restrained molecular dynamics. EMBO J. 5, 2729–2735 (1986).

    Article  CAS  Google Scholar 

  25. Vuister, G.W. & Bax, A. Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNHα) coupling constants in 15N-enriched proteins. J. Am. Chem. Soc. 115 , 7772–7777 (1993).

    Article  CAS  Google Scholar 

  26. Brunger, A.T. X-PLOR version 3.1. a system for X-ray crystallography and NMR (Yale University Press, New Haven, CT; 1992).

    Google Scholar 

  27. Pines, A., Gibby, M.G. & Waugh, J.S. Proton-enhanced NMR of dilute spins in solids. J. Chem. Phys. 59, 569–590 (1973).

    Article  CAS  Google Scholar 

  28. Levitt, M.H., Suter, D. & Ernst, R.R. Spin dynamics and thermodynamics in solid-state NMR cross polarization. J. Chem. Phys. 84, 4243– 4255 (1986).

    Article  CAS  Google Scholar 

  29. Wu, C.H., Ramamoorthy, A. & Opella, S.J. High resolution dipolar solid-state NMR spectroscopy. J. Magn. Reson. A 109, 270– 272 (1994).

    Article  Google Scholar 

  30. Ramamoorthy, A., Wu, C.H. & Opella, S.J. Three-dimensional solid-state NMR experiment that correlates the chemical shift and dipolar coupling frequencies of two heteronuclei. J. Magn. Reson. B 107, 88–90 (1995).

    Article  CAS  Google Scholar 

  31. Marassi, F.M., Ramamoorthy, A & Opella, S.J. Complete resolution of the solid-state NMR spectrum of a uniformly 15N labeled membrane protein in phospholipid bilayers. Proc. Natl. Acad. Sci. USA 94, 8551–8556 (1997).

    Article  CAS  Google Scholar 

  32. Brenneman, M.T. & Cross, T.A. A method for the analytic determination of polypeptide structure using solid-state nuclear magnetic resonance: the metric method. J. Chem. Phys., 92, 1483–1494 (1990).

    Article  CAS  Google Scholar 

  33. Wu, C.H., Ramamoorthy, A., Gierasch, L.M. & Opella, S.J. Simultaneous characterization of the amide 1H chemical shift, 1H-15N dipolar coupling, and 15N chemical shift interaction tensors in a peptide bond by three-dimensional solid-state NMR spectroscopy. J. Am. Chem. Soc. 117, 6148–6149 (1995).

    Article  CAS  Google Scholar 

  34. Tycko, R., Stewart, P.L. & Opella, S.J. Peptide plane orientations determined by fundamental and overtone 14N NMR. J. Am. Chem. Soc. 108, 5419–5425 (1986).

    Article  CAS  Google Scholar 

  35. Laskowski, R.A., Macarthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK—a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283– 291 (1993).

    Article  CAS  Google Scholar 

  36. Oblatt-Montal, M., Yamazaki, M., Nelson, R. & Montal, M. Formation of ion channels in lipid bilayers by a peptide with the predicted transmembrane sequence of botulin neurotoxin A. Protein Sci. 4, 1490–1497 (1995).

    Article  CAS  Google Scholar 

  37. Smart, O.S., Goodfellow, J.M. & Wallace, B.A. The pore dimensions of gramicidin A. Biophys. J. 65, 2455–2460 ( 1993).

    Article  CAS  Google Scholar 

  38. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946 –950 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Nelson for assistance with molecular modeling and the preparation of Fig. 5. We thank W. Sun and A. Ferrer-Montiel for their participation in the initial experiments. This research was supported by grants from the National Institute of General Medical Sciences to S.J.O and to M.M. This research utilized the Resource for Solid-State NMR of Proteins at the University of Pennsylvania, supported by a grant from the Biomedical Research Technology Program, National Center for Research Resources, National Institutes of Health. F.M.M. was supported by postdoctoral fellowships from the Natural Sciences and Engineering Research Council of Canada and the Medical Research Council of Canada. A.P.V. was supported by a postdoctoral fellowship from FAPESP-Brazil (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Opella, S., Marassi, F., Gesell, J. et al. Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy. Nat Struct Mol Biol 6, 374–379 (1999). https://doi.org/10.1038/7610

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7610

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing