Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A cis proline turn linking two β-hairpin strands in the solution structure of an antibody-bound HIV-1IIIB V3 peptide

Abstract

The refined solution structure of an 18-residue HIV-1IIIB V3 peptide in complex with the Fv fragment of an anti-gp120 antibody reveals an unexpected type VI β-turn comprising residues RGPG at the center of a β-hairpin. The central glycine and proline of this turn are linked by a cis peptide bond. The residues of the turn interact extensively with the antibody Fv. 15N{1H} NOE measurements show that the backbone of the peptide, including the central QRGPGR loop, is well ordered in the complex. The solution structure is significantly different from the X-ray structures of HIV-1MN V3 peptides bound to anti-peptide antibodies. These differences could be due to a two-residue (QR) insertion preceding the GPGR sequence in the HIV-1IIIB strain, and the much longer peptide epitope immobilized by the anti-gp120 antibody.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, The amide fingerprint region of the 600 MHz [F1-13C/15N, F2-13C/15N]-filtered NOESY spectrum of the unlabeled P1053 in complex with the [U-13C/15N]-0.5β Fv.
Figure 2: a, The alpha region of the 500 MHz 13C-edited NOESY spectrum of P1053 doubly labeled at positions Gly 12, Pro 13 and Gly 14.
Figure 3: a, A stereo view of the best-fit backbone superposition of 35 structures of segment P1053 (residues Arg 4–Gly 21) bound to 0.5β Fv.
Figure 4: The steady state 15N{1H} NOE values, amide 15N T1, T2 relaxation times, and the calculated order parameters (S2) of the antibody-bound P1053 versus residue numbers.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Moore, J. & Trkola, A. AIDS Res. Hum. Retrovir. 13, 733–736 (1997).

    Article  CAS  Google Scholar 

  2. Wu, L. et al. Nature 384, 179–183 (1996).

    Article  CAS  Google Scholar 

  3. Trkola, A. et al. Nature 384, 184–187 (1996).

    Article  CAS  Google Scholar 

  4. Hwang, S.S., Boyle, T.J., Lyerly, H.K. & Cullen, B.R. Science 257, 535–537 (1992).

    Article  CAS  Google Scholar 

  5. Schreiber, M. et al. Clin. Exp. Immunol. 107, 15–20 (1997).

    Article  CAS  Google Scholar 

  6. Honda, M. et al. Proc. Natl. Acad. Sci. USA 92, 10693–10697 (1995).

    Article  CAS  Google Scholar 

  7. Hamajima, K. et al. Clin. Immunol. Immunopathol. 77, 374–379 (1995).

    Article  CAS  Google Scholar 

  8. Rini, J.M. et al. Proc. Natl. Acad. Sci. USA 90, 6325–6329 (1993).

    Article  CAS  Google Scholar 

  9. Ghiara, J.B., Stura, E.A., Stanfield, R.L., Profy, A.T. & Wilson, I.A. Science 264, 82–85 (1994).

    Article  CAS  Google Scholar 

  10. Kwong P.D. et al. Nature 393, 648–659 (1998).

    Article  CAS  Google Scholar 

  11. Matsushita, S. et al. J. Virol. 62, 2107–2114 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Emini, E. A. et al. Nature 355, 728–730 (1992).

    Article  CAS  Google Scholar 

  13. Zvi, A. et al. Eur. J. Biochem. 229, 178–187 (1995).

    Article  CAS  Google Scholar 

  14. Zvi, A., Feigelson, D.J., Hayek,Y. & Anglister, J. Biochemistry 36, 8619–8627 (1997).

    Article  CAS  Google Scholar 

  15. Otting, G. & Wüthrich, K. Quart. Rev. Biophys. 23, 39 (1990).

    Article  CAS  Google Scholar 

  16. Lipari, G. & Szabo, A. J. Am. Chem. Soc. 104, 4546–4568 (1982).

    Article  CAS  Google Scholar 

  17. Weliky, D.P. et al. Nature Struct. Biol. 6, 141–145 (1999).

    Article  CAS  Google Scholar 

  18. Zvi, A., Hiller, R. & Anglister, J. Biochemistry 31, 6972–6980 (1992).

    Article  CAS  Google Scholar 

  19. LaRosa, G.J. et al. Science 249, 932–935 (1990).

    Article  CAS  Google Scholar 

  20. Johnson, M.E., Lin, Z., Padmanabhan, K. & Kahn, M. FEBS Lett. 3, 4–8 (1994).

    Article  Google Scholar 

  21. Endrich M.M. & Gehring, H. Eur. J. Biochem. 252, 441–446 (1998).

    Article  CAS  Google Scholar 

  22. Sherry, B. et al. Proc. Natl. Acad. Sci. USA 95, 1758–63 (1998).

    Article  CAS  Google Scholar 

  23. Faiman, G., Levy, R., Anglister, J. & Horovitz, A. J. Biol. Chem. 271, 13829–13833 (1996).

    Article  CAS  Google Scholar 

  24. Tugarinov, V., Levy, R., Dahan-Shokoroy, A. & Anglister, J. J. Biomol. NMR, 13, 193–194 (1999).

    Article  CAS  Google Scholar 

  25. Ikura, M. & Bax, A. J. Am. Chem. Soc. 114, 2433–2440 (1992).

    Article  CAS  Google Scholar 

  26. Bax, A., Grzesiek, S., Gronenborn, A.M. & Clore, G.M. J. Magn. Res. Series A 106, 269–273 (1994).

    Article  CAS  Google Scholar 

  27. Vuister, G.W., Kim, S.G., Wu, C. & Bax, A. J. Am. Chem. Soc. 116, 9206–9210 (1994).

    Article  CAS  Google Scholar 

  28. Bodenhausen, G. & Ruben, D.J. Chem. Phys. Letters 69, 185–188 (1980).

    Article  CAS  Google Scholar 

  29. Marion, D., Kay, L.E., Sparks, S.W., Torchia, D.A. & Bax, A. J. Am. Chem. Soc. 111, 1515–1517 (1989).

    Article  CAS  Google Scholar 

  30. Fesik, S.W. & Zuiderweg, E.R.P., J. Magn. Reson. 78, 588–593 (1988).

    Google Scholar 

  31. Grzesiek, S. & Bax, A. J. Am. Chem. Soc. 115, 12593–12594 (1993).

    Article  CAS  Google Scholar 

  32. Vuister, G.W. & Bax, A. J. Am. Chem. Soc. 115, 7772–7777 (1993).

    Article  CAS  Google Scholar 

  33. Kuboniwa, H., Grzesiek, S., Delaglio, F. & Bax, A. J. Biomol. NMR 4, 871–878 (1994).

    Article  CAS  Google Scholar 

  34. Kay, L.E., Nicholson, L.K., Delaglio, F., Bax, A. & Torchia, D.A. J. Magn. Reson. 97, 359–375 (1992).

    CAS  Google Scholar 

  35. Nilges, M., Clore, M. & Gronenborn, A. FEBS Lett. 229, 317–324 (1988).

    Article  CAS  Google Scholar 

  36. Brünger, A.T. X-PLOR Version 3.1. A System for X-ray Crystallography & NMR (Yale University Press, New Haven, Connecticut; 1993).

  37. Laskowsky, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  Google Scholar 

  38. Koradi, R., Billeter, M. & Wüthrich, K. J. Mol. Graphics 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  39. Clore, G.M. et al. J. Am. Chem. Soc. 112, 4989–4991 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

We thank F. Delaglio (NIH, Bethesda, USA) for NMR processing software, A. Bax (NIH, Bethesda, USA) and S. Grzesiek (Jülich Research Center, Germany) for pulse sequences and continuous assistance in the project. We are indebted to S. Matsushita (Kumamoto University, Japan) for the 0.5β hybridoma cells, and to A. Kapitkovsky and Y. Hayek (Weizmann Institute) for peptide synthesis and purification. G. Faiman and A. Horovitz (Weizmann Institute) are acknowledged for the joint effort to establish the Fv expression system. This research was supported by an NIH grant and the Minerva Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Anglister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tugarinov, V., Zvi, A., Levy, R. et al. A cis proline turn linking two β-hairpin strands in the solution structure of an antibody-bound HIV-1IIIB V3 peptide. Nat Struct Mol Biol 6, 331–335 (1999). https://doi.org/10.1038/7567

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7567

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing