Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quaternary changes in topoisomerase II may direct orthogonal movement of two DNA strands

Abstract

Type II DNA topoisomerases mediate the passage of one DNA duplex through a transient break in another, an event essential for chromosome segregation and cell viability. The active sites of the type II topoisomerase dimer associate covalently with the DNA break-points and must separate by at least the width of the second DNA duplex to accommodate transport. A new structure of the Saccharomyces cerevisiae topoisomerase II DNA-binding and cleavage core suggests that in addition to conformational changes in the DNA-opening platform, a dramatic reorganization of accessory domains may occur during catalysis. These conformational differences have implications for both the DNA-breaking and duplex-transport events in the topo II reaction mechanism, suggest a mechanism by which two distinct drug-resistance loci interact, and illustrate the scope of structural changes in the cycling of molecular machines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Type II topoisomerase structure and a new quaternary arrangement of yeast topo II.
Figure 2: Opening and closing of the topo II A' heads.
Figure 3: Stereo diagrams of the B' domains, and side views in the context of the topo II DNA-binding and cleavage core.
Figure 4: Schematic illustration of a proposed B' domain rotation within the global catalytic mechanism.

Similar content being viewed by others

References

  1. Wang, J.C. in Annu. Rev. Biochem. vol. 65, pp. 635–692 (1996).

    Article  CAS  Google Scholar 

  2. Lynn, R., Giaver, G., Swanberg, S.L. & Wang, J.C. Science 233, 647–649 (1986).

    Article  CAS  Google Scholar 

  3. Wigley, D.B., Davies, G.J., Dodson, E.J., Maxwell, A. & Dodson, G. Nature 351, 624–629 (1991).

    Article  CAS  Google Scholar 

  4. Roca, J.R. & Wang, J.C. Cell 71, 833–840 (1992).

    Article  CAS  Google Scholar 

  5. Ali, J.A., Jackson, A.P., Howells, A.J. & Maxwell, A. Biochemistry 32, 2717–2724 (1993).

    Article  CAS  Google Scholar 

  6. Horowitz, D.S. & Wang, J.C. J. Biol. Chem. 262, 5339–5344 (1987).

    CAS  PubMed  Google Scholar 

  7. Worland, S.T. & Wang, J.C. J. Biol. Chem. 264, 4412–4416 (1989).

    CAS  PubMed  Google Scholar 

  8. Yoshida, H., Bogaki, M., Nakamura, M., Ya, L.M. & Nakamura, S. Antimicrob. Agents Chemother. 35, 1647–1650 (1991).

    Article  CAS  Google Scholar 

  9. Wasserman, R.A. & Wang, J.C. J. Biol. Chem. 269, 20943–20951 (1994).

    CAS  PubMed  Google Scholar 

  10. Reece, R.J. & Maxwell, A. J. Biol. Chem. 264, 19648–19653 (1989).

    CAS  PubMed  Google Scholar 

  11. Berger, J.M., Gamblin, S.J., Harrison, S.C. & Wang, J.C. Nature 379, 225–232 (1996).

    Article  CAS  Google Scholar 

  12. Cabral, J.H.M. et al. Nature 388, 903–906 (1997).

    Article  Google Scholar 

  13. Branden, C. & Tooze, J. Introduction to protein structure. (Garland Publishing, New York; 1991).

    Google Scholar 

  14. Berger, J.M., Fass, D., Wang, J.C. & Harrison, S.C. Proc. Natl. Acad. Sci. USA 95, 7876–7881 (1998).

    Article  CAS  Google Scholar 

  15. Schultz, S.C., Shields, G.C. & Steitz, T.A. Science 253, 1001–1007 (1991).

    Article  CAS  Google Scholar 

  16. Lindsley, J.E. & Wang, J.C. Proc. Nat. Acad. Sci. USA 88, 10485–10489 (1991).

    Article  CAS  Google Scholar 

  17. Li, W. & Wang, J.C. J. Biol. Chem. 272, 31190–31195 (1997).

    Article  CAS  Google Scholar 

  18. Lima, C.D., Wang, J.C. & Mondragón, A. Nature 367, 138–146 (1994).

    Article  CAS  Google Scholar 

  19. Caron, P.R. & Wang, J.C. Molecular biology of DNA topoisomerases and its application to chemotherapy. (eds. Andoh, T., Ikeda, H. & Oguro, M.) 1–18 (CRC Press, Boca Raton; 1993).

    Google Scholar 

  20. Xu, Z., Horwich, A.L. & Sigler, P.B. Nature 388, 741–750 (1997).

    Article  CAS  Google Scholar 

  21. Vonrhein, C., Schlauderer, G.J. & Schulz, G.E. Structure 3, 483–490 (1995).

    Article  CAS  Google Scholar 

  22. Holmes, K.C. Curr. Opin. Struct. Biol. 6, 781–789 (1996).

    Article  CAS  Google Scholar 

  23. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 472–494 (1997).

    Article  Google Scholar 

  24. Collaborative Computational Project Number 4, Acta Crystallogr. D 50, 760–763 (1994).

  25. Fortelle, E.d.-L. & Bricogne, G. Methods Enzymol. 276, 472–494 (1997).

    Article  Google Scholar 

  26. Abrahams, J.P. & Leslie, A.G.W. Acta Crystallogr. D 52, 30–42 (1996).

    Article  CAS  Google Scholar 

  27. Navaza, J. Acta Cryst. D 50, 1507–1516 (1994).

    Google Scholar 

  28. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  29. Brünger, A.T. XPLOR (Version 3.1): A system for X-ray Crystallography and NMR (Yale University Press, New Haven, Connecticut; 1993).

  30. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283 (1993).

    Article  CAS  Google Scholar 

  31. Kraulis, P. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  32. Carson, M. J. Appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

  33. Nicholls, A., Sharp, K.A. & Honig, B. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.E. Lindsley, A.S. Lynch, P.S. Kim, S.J. Gamblin, S.C. Harrison, and J.C. Wang for discussions on topoisomerase mechanism. We are grateful to C. Ogata of the Brookhaven National Synchrotron Light Source beamline X4A and members of the laboratory of P.S.K. for assistance with data collection, and to S.C.H., J.C.W., D. Minor and M.D. Nichols for critical reading of the manuscript. The authors thank A. Maxwell and R.C. Liddington for providing coordinates of the GyrA breakage-reunion domain, and D.B. Wigley for providing coordinates of the GyrB ATPase domain. D.F. is supported by an NIH Grant to P.S. Kim. J.M.B. acknowledges support from the W.M. Keck Foundation and the Whitehead Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Berger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fass, D., Bogden, C. & Berger, J. Quaternary changes in topoisomerase II may direct orthogonal movement of two DNA strands. Nat Struct Mol Biol 6, 322–326 (1999). https://doi.org/10.1038/7556

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7556

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing