Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the hCASK PDZ domain reveals the structural basis of class II PDZ domain target recognition

Abstract

PDZ domain containing proteins assist formation of cell–cell junctions and localization of membrane protein receptors and ion channels. PDZ domains interact with the C-terminal residues of a particular target membrane protein. Based on their binding specificities and sequence homologies, PDZ domains fall into two classes. The first crystal structure of a class II PDZ domain, that of hCASK, has been solved by multi-wavelength anomalous dispersion phasing. Complex formation with the C-terminus of a neighboring non-crystallographically related PDZ domain reveals interactions between hCASK and its ligand. Class II PDZ domains differ from class I domains by formation of a second hydrophobic binding pocket. The C-terminal carboxylate binding loop of the PDZ domain is structurally conserved in both classes suggesting a generalized carboxylate binding motif (h–Gly–h) where h is a hydrophobic residue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cho, K., Hunt, C. and Kennedy, M.B. The Rat Brain Postsynaptic Density Fraction Contains a Homolog of the Drosophila Discs-Large Tumor Suppressor Protein. Neuron 9, 929–942 (1992).

    Article  CAS  Google Scholar 

  2. Woods, D.F. and Bryant, P.J. Molecular Cloning of the Lethal(1)Discs Large-1 Oncogene of Drosophila. Dev. Biol. 134, 222–235 (1989).

    Article  CAS  Google Scholar 

  3. Anderson, J.M., Stevenson, B.R., Jestaitis, L.A., Goodenough, D. and Mooseker, M.S. Characterization of ZO-1, a Protein Component of the Tight Junction from Mouse Liver and Madin-Darby Canine Kidney Cells. J. Cell Biol. 106, 1141–1149 (1988).

    Article  CAS  Google Scholar 

  4. Kornau, H., Schenker, L., Kennedy, M.B. and Seeburg, P. Domain Interaction Between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95. Science 269, 1737–1740 (1995).

    Article  CAS  Google Scholar 

  5. Niethammer, M., Kim, E. and Sheng, M. Interaction Between the C Terminus of NMDA Receptor Subunits and Multiple Members of the PSD-95 Family of Membrane-Associated Guanylate Kinases. J. Neurosci. 16, 2157–2163 (1996).

    Article  CAS  Google Scholar 

  6. Kim, E., Neithammer, M., Rothschild, A., Jan, Y. and Sheng, M. Clustering of Shaker-Type Potassium Channels by Interaction with a Family of Membrane-Associated GuanylateKinases. Nature 378, 85–88 (1995).

    Article  CAS  Google Scholar 

  7. Harrison, S.C. Peptide-Surface Association: The Case of PDZ and PTB Domains. Cell 86, 341–343 (1996).

    Article  CAS  Google Scholar 

  8. Kuriyan, J. and Cowburn, D. Modular Peptide Recognition Domains in Eukaryotic Signaling. Annu. Rev. Biophys. Biomolec. Struct. 26, 259–288 (1997).

    Article  CAS  Google Scholar 

  9. Gomperts, S.N. Clustering Membrane Protein: Itís All Coming Together with the PSD-95/SAP90 Protein Family. Cell 84, 659–662 (1996).

    Article  CAS  Google Scholar 

  10. Sheng, M. PDZs and Receptor/Channel Clustering: Rounding Up the Latest Suspects. Neuron 17, 575–578 (1996).

    Article  CAS  Google Scholar 

  11. Pawson, T. and Scott, J.D. Signaling through scaffold anchoring, and adaptor proteins. Science 278, 2075–2080 (1997).

    Article  CAS  Google Scholar 

  12. Willot, E., Balda, M., Fanning, A., Jameson, B., Van Itallie, C. and Anderson, J.M. The Tight Junction Protein ZO-1 is Homologous to the Drosophila Discs-Large Tumor Suppressor Protein of Septate Junctions. Proc. Natl. Acad. Sci. USA 90, 7834–7838 (1993).

    Article  Google Scholar 

  13. Jesaitis, L. and Goodenough, D.A. Molecular Characterization and Tissue Distribution of ZO-2, a Tight Junction Protein Homologous to ZO-1 and the Drosophila Discs-Large Tumor Suppressor Protein. J. Cell Biol. 124, 949–961 (1994).

    Article  CAS  Google Scholar 

  14. Fanning, A.S., Lapierre, L.A., Brecher, A.R., Van Itallie, C.M. and Anderson, J.M. Protein Interaction in the Tight Junction: The Role of MAGUK Proteins in Regulating Tight Junction Organization and Function. Curr. Topics Memb. 43, 211–235 (1996).

    Article  CAS  Google Scholar 

  15. Fanning, A.S. and Anderson, J.M. PDZ Domains and the Formation of Protein Networks, at the Plasma Membrane. Curr. Topics Microbiol. Immunol. 228, 209–233 (1997).

    Google Scholar 

  16. Woods, D.F. and Bryant, P.J. The Discs-Large Tumor Suppressor Gene of Drosophila Encodes a Guanylate Kinase Homolog Localized at Septate Junctions. Cell 66, 451–464 (1991).

    Article  CAS  Google Scholar 

  17. Woods, D.F., Hough, C., Peel, D., Callaini, G. and Bryant, P.J. Dlg Protein is Required for Junction Structure, Cell Polarity, and Proliferation Control in Drosophila Epithelia J. Cell. Biol. 134, 1469–1482 (1996).

    Article  CAS  Google Scholar 

  18. Muller, B.M. et al. Molecular Characterization and Spatial Distribution of SAP97, a Novel Presynaptic Protein Homologous to SAP90 and the Drosophila Discs-Large Tumor Suppressor Protein. J. Neurosci. 15, 2354–2366 (1995).

    Article  CAS  Google Scholar 

  19. Irie, M. et al. Binding of Neuroliginsto PSD-95. Science 277, 1511–1515 (1997).

    Article  CAS  Google Scholar 

  20. Dong, H. et al. GRIP: A Synaptic PDZ Domain-Containing Protein that Interacts with AMPA Receptors. Nature 386, 279–284 (1997).

    Article  CAS  Google Scholar 

  21. Songyang, Z. et al. Recognition of Unique Carboxyl-Terminal Motifs by Distinct PDZ Domains. Science 275, 73–77 (1997).

    Article  CAS  Google Scholar 

  22. Hata, Y., Butz, S. and Sudhof, T.C. CASK: A Novel dlg/PSD95 Homolog with an N-Terminal Calmodulin-Dependent Protein Kinase Domain Identified by Interaction with Neurexins. J. Neurosci. 16, 2488–2494 (1996).

    Article  CAS  Google Scholar 

  23. Carey, D.J. Syndecans: Multifunctional Cell-Surface Co-Receptors. Biochem. J. 327, 1–16 (1997).

    Article  CAS  Google Scholar 

  24. Ushkaryov, Y., Petrenko, A., Geppert, M. and Sudhof, T.C. Neurexins: Synaptic Cell Surface Proteins Related to the alpha-Latrotoxin Receptor and Laminin. Science 257, 50–56 (1992).

    Article  CAS  Google Scholar 

  25. Hoskins, R., Hajnal, A., Harp, S. and Kim, S.K. The C. elegans Vulval Induction Gene Lin-2 Endoes a Member of the MAGUK Family of Cell Junction Proteins. Dev. 122, 97–111 (1996).

    CAS  Google Scholar 

  26. Simske, J.S., Kaech, S.M., Harp, S. and Kim, S.K. Let-23 Receptor Localization by the Cell Junction Protein Lin-7 during C. elegans Vulval Induction. Cell 85, 195–204 (1996).

    Article  CAS  Google Scholar 

  27. Doyle, D.A. et al. Crystal Structures of a Complexed and Peptide-Free Membrane Protein-Binding Domain: Molecular Basis of Peptide Recognition by PDZ. Cell 85, 1067–1076 (1996).

    Article  CAS  Google Scholar 

  28. Cabral, J. et al. Crystal Structure of a PDZ Domain from the Human Homologue of Discs-Large Protein. Nature 382, 649–652 (1996).

    Article  CAS  Google Scholar 

  29. Shultz, J. . et al. Specific Interactions between the Syntrophin PDZ Domain and Voltage-Gated Sodium Channels. Nature Struct. Biol. 5, 19–24 (1998).

    Article  Google Scholar 

  30. Hendrickson, W.A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation, Science 254, 51–58 (1991).

    Article  CAS  Google Scholar 

  31. Brunger, A.T. The Free R Value: A Novel Statistical Quantity for Assessing the Accuracy of Crystal Structures. Nature 355, 472–474 (1992).

    Article  CAS  Google Scholar 

  32. Leahy, D.J., Erickson, H.P., Aukhil, I., Joshi, P. and Hendrickson, W.A. Crystallization of a fragment of human fibronectin: introduction of methionine by site–directed mutagenesis to allow phasing via selenomethionine, Proteins 19, 48–54 (1994).

    Article  CAS  Google Scholar 

  33. Otwinowski, Z. In: Collection and Processing (Sawyer, L., Isaacs, N. & Bailey, S. eds) 56–62 (SERC Daresbury Laboratory, Warrington,UK; 1993)

    Google Scholar 

  34. Brünger, A.T. et al. Crystallography and NMR System: A New Software Suite for Macromolecular Structure Determination, Acta Crystallogr. D, in the press (1998).

  35. Otwinowski, Z. In: Proc. CCP4 study weekend 25-26 January (W. Wolf, P.R. Evans, A.G.W. Leslie, eds.) 80–85 (SERC Daresbury laboratory; 1991).

    Google Scholar 

  36. Phillips, J.C. & Hodgson, K.O. The use of anomalous scattering effects to phase diffraction patterson from macromolecules. Acta Crystallogr. A 36, 856–864 (1980).

    Article  Google Scholar 

  37. Burling, F.T., Weis, W.I., Flaherty, K.M. and Brunger, A.T. Direct Observation of Protein Solvation and Discrete Disorder with Experimental Crystallographic Phases. Science 271, 72–77 (1996).

    Article  CAS  Google Scholar 

  38. Wang, B.-C. Resolution of phase ambiguity in macromolecular crystallography. Meth. Enz.. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  39. Zhang, K.Y.J. and Main, P. Histogram matching as a new density modification technique for phase refinement and extension of protein molecules. Acta Crystallogr. A46, 41–46 (1990).

    Article  CAS  Google Scholar 

  40. Jones, T.A., Zou, J.Y., Cowan, S. and Kjeldgaard, M. Improved Methods for Building Protein Models in Electron Density Maps and the Location of Errors in These Models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  41. Rice, L.M. and Brünger, A.T. Torsion Angle–Dynamics: Reduced Variable Conformational Sampling Enhances Crystallographic Structure Refinement. Proteins 19, 277–290 (1994).

    Article  CAS  Google Scholar 

  42. Pannu, N.S., Murshudov, G.N., Dodson, E.J. & Read, R. Incorporation of prior phase information strengthens maximum likelihood structural refinement. Acta Crystallogr. D, in the press (1998).

  43. Weis, W.I., Brünger, A.T., Skehel, J.J., Wiley, D.C., Refinement of the Influenza Virus Haemagglutinin by SimulatedAnnealing, J. Mol. Biol. 212, 737–761 (1990).

    Article  CAS  Google Scholar 

  44. Jiang, J.-S. and Brünger, A.T. Protein hydration observed by x-ray diffraction: solvation properties of penicillopepsion and neuraminidase crystal structures, J. Mol. Biol 243, 100–115 (1994).

    Article  CAS  Google Scholar 

  45. Read, R.J. Improved Fourier coefficients for maps using phases form partial structures with errors, Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  46. Hodel, A., Kim, S.-H. and Brünger, A.T., Model Bias in Macromolecular Crystal Structures, Acta Crystallogr. A48, 851–859 (1992).

    Article  CAS  Google Scholar 

  47. Pannu, N.S. and Read, R.J. Improved Structure Refinement Through Maximum likelyhood. Acta Crystallography A52, 659–668 (1996).

    Article  CAS  Google Scholar 

  48. Adams, P.D., Pannu, N.S., Read, R.J. and Brünger, A.T. Cross-validated Maximum Likelihood Enhances Crystallographic Simluated Annealing Refinement. Proc. Natn. Acad. Sci. USA 94, 5018–5023 (1997).

    Article  CAS  Google Scholar 

  49. Kraulis, P. MOLSCRIPT: A Program to Produce Both Detailed and Schematic Plots of Protein Structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  50. Nicholls, A., Sharp, K.A. and Honig, B. Protein Folding and Association: Insights from the Interfacial and Thermodynamic Properties of Hydrocarbons. Proteins 1, 281–296 (1991).

    Article  Google Scholar 

  51. Bricogne, G. Bayesian Statistical Viewpoint on Structure Determination: Basic Concepts and Examples. Meths Enz.. 276, 361–423 (1997).

    Article  CAS  Google Scholar 

  52. Laskowski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M. PROCHECK: AProgram to Check the Stereochemical Quality of Protein Structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel T. Brünger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniels, D., Cohen, A., Anderson, J. et al. Crystal structure of the hCASK PDZ domain reveals the structural basis of class II PDZ domain target recognition. Nat Struct Mol Biol 5, 317–325 (1998). https://doi.org/10.1038/nsb0498-317

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0498-317

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing