Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 Å resolution

Abstract

Laccase catalyses the oxidation of a variety of organic substrates coupled to the reduction of oxygen to water. It is widely believed to be the simplest representative of the ubiquitous blue multi-copper oxidase family. Laccase is implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism in fungi and plants. The structure of laccase from the fungus Coprinus cinereus has been determined by X-ray crystallography at a resolution of 2.2 Å. Laccase is a monomer composed of three cupredoxin-like β-sandwich domains, similar to that found in ascorbate oxidase. In contrast to ascorbate oxidase, however, the mononuclear type-1 Cu site lacks the axial methionine ligand and so exhibits trigonal planar coordination, consistent with its elevated redox potential. Crucially, the structure is trapped in a Cu depleted form in which the putative type-2 Cu atom is completely absent, but in which the remaining type-1 and type-3 Cu sites display full occupancy. Type-2 Cu depletion has unexpected consequences for the coordination of the remaining type-3 Cu atoms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Xu, F. et al. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochim. Biophysica Acta 1292, 303–311 (1996).

    Article  Google Scholar 

  2. Xu, F. Oxidation of phenols, anilines and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry 35, 7608–7614 (1996).

    Article  CAS  Google Scholar 

  3. Bao, W., O'Malley, D.M., Whetten, R. & Sederoff, R.R. A laccase associated with lignification in loblolly pine xylem. Science 260, 672–674 (1993).

    Article  CAS  Google Scholar 

  4. Ander, P. & Eriksson, K.E. The importance of phenol oxidase activity in lignin degradation by the white rot fungus Sporotrichum pulverulentum. Arch. Microbiol. 109, 1–8 (1976).

    Article  CAS  Google Scholar 

  5. Kersten, P.J., Kalyanaraman, B., Hammel, K.E., Reinhammar, B. & Kirk, T.K. Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem. J. 268, 475–480 (1990).

    Article  CAS  Google Scholar 

  6. Leatham, G.F. & Stahmann, M.A. Studies on the laccase of Lentinus edodes: specificity, localization and assocition with the development of fruiting bodies. J. Gen. Microbiol. 125, 147–157 (1981).

    CAS  Google Scholar 

  7. Messerschmidt, A. Copper metalloenzymes. In Comprehensive Biological Catalysis Vol. III (ed. Sinnott, M.) 401–426 (Academic Press, London, 1997).

    Google Scholar 

  8. Messerschmidt, A. Multi-Copper Oxidases, (World Scientific, Singapore, 1997).

    Book  Google Scholar 

  9. Malmström, B.C., Andréasson, L.E. & Reinhammar, R. Copper-containing oxidases and superoxide dismutase. In The Enzymes Vol. 12 (ed. Boyer, P.) 507–578 (Academic Press, New York, 1975):

    Google Scholar 

  10. Adman, E.T. Copper protein structures. Adv. Protein Chem. 42, 145–197 (1991).

    Article  CAS  Google Scholar 

  11. Messerschmidt, A. et al. Refined crystal structure of ascorbate oxidase at 1.9Å resolution. J. Mol. Biol. 224, 179–205 (1992).

    Article  CAS  Google Scholar 

  12. Zaitseva, I. et al. The X-ray structure of human serum ceruloplasmin at 3.1Å: nature of the copper centres. J. Biol. Inorg. Chem. 1, 15–23 (1996).

    Article  CAS  Google Scholar 

  13. Holm, R.H., Kennepohl, P. & Solomon, E.I. Structural and functional aspects of metal sites in biology. Chem Rev 96, 2239–2314 (1996).

    Article  CAS  Google Scholar 

  14. Baker, E.N. Structure of Azurin from Alcaligenes denitrificans Refinement at 1.8 Å resolution and comparison of the two crystallographically independent molecules. J. Mol. Biol. 203, 1071–1095 (1988).

    Article  CAS  Google Scholar 

  15. Collyer, C.A., Guss, J.M., Sugimura, Y., Yoshizaki, F. & Freeman, H.C. Crystal structure of plastocyanin from a green alga, Enteromorpha prolifera. J. Mol. Biol. 211, 617–632 (1990).

    Article  CAS  Google Scholar 

  16. Murphy, M.E.P., Lindley, P.F. & Adman, E.T. Structural comparison of cupredoxin domains: domain recycling to construct proteins with novel functions. Protein Sci. 6, 761–770 (1997).

    Article  CAS  Google Scholar 

  17. Reinhammar, B. In Copper Proteins and Copper Enzymes Vol. 3 (ed. Lontie, R.) 1–36 (CRC Press, Boca Raton, Florida, 1984).

    Google Scholar 

  18. Solomon, E.I., Sundaram, U.M. & Machonkin, T.E. Multicopper oxidases and oxygenases. Chem. Rev. 96, 2536–2605 (1996).

    Article  Google Scholar 

  19. Messerschmidt, A. & Huber, R. The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin: modelling and structural relationships. Eur. J. Biochem. 187, 341–352 (1990).

    Article  CAS  Google Scholar 

  20. Karlsson, B.G., Aasa, R., Malmström, B.G. & Lundberg, L.G. Rack-induced bonding in blue copper proteins: spectroscopic properties and reduction potential of azurin mutant Met-121 → Leu. FEBS Lett. 253, 99–102 (1989).

    Article  CAS  Google Scholar 

  21. Guckert, J.A., Lowry, M.D. & Solomon, E.I. Electronic structure of the reduced blue copper active site: contributions to reduction potentials and geometry. J. Am. Chem. Soc. 117, 2817–2844 (1995).

    Article  CAS  Google Scholar 

  22. Messerschmidt, A., Steigemann, W., Huber, R., Lang, G. & Kroneck, P.M.H. X-ray crystallographic characterisation of type-2-depleted ascorbate oxidase from zucchini. Eur. J. Biochem 209, 179–205 (1992).

    Article  Google Scholar 

  23. LuBien, C.D. et al. Chemical and Spectroscopic proerties of the binuclear copper active site in Rhus laccase: direct conformation of a reduced binuclear Type 3 copper site in type 2 depleted laccase and intramolecular coupling of the type 3 to the type 1 and type 2 copper sites. J. Am. Chem. Soc. 103, 7014–7016 (1981).

    Article  CAS  Google Scholar 

  24. Solomon, E.I., Machonkin, T.E. & Sundaram, U.M. Spectroscopy of multi-copper oxidases. in Multi-copper oxidases (ed. Messerschmidt, A.) 103–127 (World Scientific, Singapore, 1997).

    Chapter  Google Scholar 

  25. Kau, L.-S., Spira-Solomon, D.J., Penner-Hahn, J.E., Hodgson, K.O. & Solomon, E.I. X-ray absorption edge determination of the oxidation state and coordination number of copper: application to the type 3 site in Rhus vernicifera laccase and its reaction with oxygen. J. Am. Chem. Soc. 109, 6433–6442 (1987).

    Article  CAS  Google Scholar 

  26. Thurston, C.F. The structure and function of fungal laccases. Microbiology 140, 19–26 (1994).

    Article  CAS  Google Scholar 

  27. Solomon, E.I. & Lowery, M.D. Electronic structure contributions to function in bioinorganic chemistry. Science 259, 1575–1581 (1993).

    Article  CAS  Google Scholar 

  28. Cole, A.P., Root, D.E., Mukherjee, P., Solomon, E.I. & Stack, T.D.P. A Trinuclear Intermediate in the copper-mediated reduction of O2: four electrons from three coppers. Science 273, 1848–1850 (1996).

    Article  Google Scholar 

  29. Graziani, M.T., Morpurgo, L., Rotilio, G. & Mondovi, B. Selective removal of type 2 copper from Rhus vernicifera laccase. FEBS Lett. 70, 87–(1976).

    Article  CAS  Google Scholar 

  30. McMillin, D.R. & Eggleston, M.K. Bioinorganic chemistry of laccase. in Multi-copper oxidases (ed. Messerschmidt, A.) 129–166 (World Scientific, Singapore, 1997).

    Chapter  Google Scholar 

  31. Reinhammar, B. & Oda, Y. Spectroscopic and catalytic properties of Rhus vernicifera laccase depleted in type 2 copper. J. Inorg. Biochem. 11, 115–127 (1979).

    Article  CAS  Google Scholar 

  32. Ducros, V. et al. Crystallisation and preliminary X-ray analysis of the laccase from Coprinus cinereus. Acta. Crystallogr. D 53, 605–607 (1997).

    Google Scholar 

  33. Otwinowski, Z. Oscillation data reduction program. In Data collection and Processing: proceedings of the CCP4 study weekend (eds Sawyer, L., Issacs, N. & Bailey, S.) 56–62 (Science and Engineering Research Council, Daresbury, U.K, 1993).

    Google Scholar 

  34. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  35. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A50, 157–163 (1994).

    Article  CAS  Google Scholar 

  36. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum likelihood method. Acta Crystallogr D 53, 240–255 (1997).

    Google Scholar 

  37. Buünger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  Google Scholar 

  38. Lamzin, V.S. & Wilson, K.S. Automated refinement of protein models. Acta Crystallogr. D49, 129–147 (1993).

    CAS  Google Scholar 

  39. Engh, R.A. & Huber, R. Accurate bond length and angle parameters for X-ray protein structure refinement. Acta Crystallogr. A 47, 392–400 (1991).

    Article  Google Scholar 

  40. Ramachandran, G.N., Ramakrishnan, C. & Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol 7, 95–99 (1963).

    Article  CAS  Google Scholar 

  41. Bernstein, F.C. et al. The protein data bank: a computer-based archival file for macromolecular structures. J. Mol. Biol 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  42. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gideon J. Davies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ducros, V., Brzozowski, A., Wilson, K. et al. Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 Å resolution. Nat Struct Mol Biol 5, 310–316 (1998). https://doi.org/10.1038/nsb0498-310

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0498-310

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing