Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of aspartate decarboxylase at 2.2 Å resolution provides evidence for an ester in protein self–processing

Abstract

The structure of L-aspartate-α-decarboxylase from E. coli has been determined at 2.2 Å resolution. The enzyme is a tetramer with pseudofour-fold rotational symmetry. The subunits are six-stranded β-barrels capped by small α-helices at each end. The active sites are located between adjacent subunits. The electron density provides evidence for catalytic pyruvoyl groups at three active sites and an ester at the fourth. The ester is an intermediate in the autocatalytic self-processing leading to formation of the pyruvoyl group. This unprecedented structure provides novel insights into the general phenomenon of protein processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chong, S. et al Protein splicing involving the Saccharomyces cerevisiae VMA1 intein J. Biol. Chem. 271, 22159–22168 (1996).

    Article  CAS  Google Scholar 

  2. Shao, Y. & Kent, S.B.H. Protein splicing: occurrence, mechanisms and related phenomena. Chem. Biol. 4, 187–194 (1997).

    Article  CAS  Google Scholar 

  3. van Poelje, P.D. & Snell, E.E. Pyruvoyl-dependent enzymes. Annu. Rev. Biochem. 59, 29–59 (1990).

    Article  CAS  Google Scholar 

  4. Shao, Y., Xu, M.-Q. & Paulus, H. Protein splicing: evidence for an N-O acyl rearrangement as the initial step in the splicing process. Biochemistry 35, 3810–3815 (1996).

    Article  CAS  Google Scholar 

  5. Xu, M.-Q. & Perler, F.B. The mechanism of protein splicing and its modulation by mutation. EMBOJ. 15, 5146–5153 (1996).

    Article  CAS  Google Scholar 

  6. Recsei, P.A., Huynh, Q.K. & Snell, E.E. Conversion of prohistidine decarboxylase to histidine-decarboxylase peptide-chain cleavage by non-hydrolytic serinolysis. Proc. Natl. Acad. Sci. USA 80, 973–977 (1983).

    Article  CAS  Google Scholar 

  7. Cronan, J.E. Beta-Alanine synthesis in Escherichia coli. J. Bacteriol. 141, 1291–1297 (1980).

    CAS  PubMed  Google Scholar 

  8. Ramjee, M.K., Genschel, U., Abell, C. & Smith, A.G. Escherichia coli L-aspartate-α-decarboxylase: preprotein processing and observation of reaction intermediates by electrospray mass spectrometry. Biochem. J. 323, 661–669 (1997).

    Article  CAS  Google Scholar 

  9. Gallagher, T., Snell, E.E. & Hackert, M.L. Pyruvoyl-dependent histidine-decarboxylase - active-site structure and mechanistic analysis. J. Biol. Chem. 264, 12737–12743 (1989).

    CAS  PubMed  Google Scholar 

  10. Williamson, J.M. & Brown, G.M. J. Biol. Chem. 254, 8074–8082 (1979).

    CAS  PubMed  Google Scholar 

  11. Song, L.Z. et al. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1866 (1996).

    Article  CAS  Google Scholar 

  12. Sutcliffe, M.J., Haneef, I., Carney, D. & Blundell, T.L. Knowledge-based modeling of homologous proteins. 1. 3-dimensional frameworks derived from the simultaneous superposition of multiple structures. Protein Engng. 1, 377–384 (1987).

    Article  CAS  Google Scholar 

  13. Hodel, A., Kim, S.H. & Brunger, A.T. Model bias in macromolecular crystal structures. Acta Crystallogr. A. 48, 851–859 (1992).

    Article  Google Scholar 

  14. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A42, pp. 140–149 (1986).

    Article  CAS  Google Scholar 

  15. Iwai, K. & Ando, T. N-O acyl shifts. Meth. Enz. 11, 262–282 (1987).

    Google Scholar 

  16. Donate, L.E., Rufino, S.D., Canard, L.H.J. & Blundell, T.L. Conformational analysis and clustering of short and medium size loops connecting regular secondary structures: A database for modeling and prediction. Protein Sci. 5, 2600–2616 (1996).

    Article  CAS  Google Scholar 

  17. Rufino, S.D., Donate, L.E., Canard, L.H.J & Blundell T.L Predicting the conformational class of short and medium size loops connecting regular secondary structures: Application to comparative modelling. J. Mol. Biol. 267, 352–367 (1997).

    Article  CAS  Google Scholar 

  18. Vanopdenbosch, N., Cramer, R. & Giarrusso, F.F. SYBYL, The integrated molecular modeling system. J. Mol. Graph. 3, 110–111 (1985).

    Google Scholar 

  19. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Meth Enz. 276, pp.307–326 (1997).

    Article  CAS  Google Scholar 

  20. Sheldrick, G.M. The SHELXS system. In Crystallographic computing 5. (Podjarny, A.D. & Thierry, J.C., eds) 145–157 (IUCR, Oxford University Press, Oxford, UK; 1991).

    Google Scholar 

  21. Bailey, S. The CCP4 suite - programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

    CAS  Google Scholar 

  22. de la Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Meth. Enz. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  23. Jones, T.A., Zou, J.-Y, Cowan, S.W. & Kjelgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  24. Brunger, A.T. Crystallographic refinement by simulated annealing application to a 2.8-Å resolution structure of aspartate-aminotransferase. J. Mol. Biol. 203, 803–816 (1988)

    Article  CAS  Google Scholar 

  25. Kleywegt, G.J. Dictionaries for Heteros. ESF/CCP4 Newsletter 31, 45–50 (1995).

    Google Scholar 

  26. Alien, F.H. et. al. The development of Version 3 and Version 4 of the Cambridge Structural Database System. J. Chem. Info. Comp. Sci. 31, 187–204 (1991).

    Article  Google Scholar 

  27. Laskowski, R.A., Macarthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK - A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  28. Kraulis, P.J. MOLSCRIPT - A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  29. Merritt, E.A. & Murphy, M. Version 2.0, a program for photorealistic molecular graphics. Acta Crystallogr. D50, 869–873 (1994).

    CAS  Google Scholar 

  30. Nicholls, A., Bharadwaj, R. & Honig, B. GRASP - graphical representation and analysis of surface-properties. Biophys. J. 64, A 166 (1993).

    Google Scholar 

  31. Luzzati, V. Traitement statistique des erreurs dans la determination des structures cristallines. Acta Crystallogr. 5, 802–810 (1952).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Abell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albert, A., Dhanaraj, V., Genschel, U. et al. Crystal structure of aspartate decarboxylase at 2.2 Å resolution provides evidence for an ester in protein self–processing. Nat Struct Mol Biol 5, 289–293 (1998). https://doi.org/10.1038/nsb0498-289

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0498-289

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing