Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of the primary metal ion-activation sites of the diphtheria tox represser by X-ray crystallography and site-directed mutational analysis

Abstract

The diphtheria tox represser, DtxR, is a 226 amino acid transition metal ion-activated regulatory protein that controls the expression of diphtheria toxin in toxigenic Corynebacterium diphtheriae. The previously solved three-dimensional DtxR structures have identified two potential metal ion binding sites which may play a role in the activation of DNA binding by the represser. We have used both X-ray crystallographic and site-directed mutational analysis of DtxR(C102D)–Ni2+ complexes and DtxR to identify the metal ion-binding site which results in the activation of the repressor. We demonstrate that DtxR contains both a primary and an ancillary metal ion binding site. The primary site functions directly in the activation of DNA binding. In contrast, the ancillary site contributes weakly, if at all, to activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tao, X., Schiering, N., Zeng, H., Ringe, D. & Murphy, J.R. Iron, DtxR, and the regulation of diphtheria toxin expression. Molec. Microbiol. 14, 191–197 (1994).

    Article  CAS  Google Scholar 

  2. Pappenheimer, A.M., Jr. The pathogenesis of diphtheria. Symp. Soc. Gen. Microbiol., 40–56 (1955).

  3. Uchida, T., Gill, D.M. & Pappenheimer, A.M., Jr. Mutation in the structural gene for diphtheria toxin carried by temperate phage β. Nature 233, 8–11 (1971).

    Article  CAS  Google Scholar 

  4. Buck, G.A., Gross, R.E., Wong, T.P., Lorea, T. & Groman, N.B. DNA relationships among some tox-bearing corynebacteriophages. Infect. Immun. 49, 679–684 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Boyd, J., Oza, M. & Murphy, J.R. Molecular cloning and DNA sequence analysis of an iron dependent diphtheria tox regluatory element (dtxR) from Corynebacterium diphtherias . Proc. Natl. Acad. Sci. USA 87, 5968–5972 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schmitt, M.P. & Holmes, R.K. Iron-dependent regulation of diphtheria toxin and siderophores expression by the cloned Corynebacterium diphtheriae represser gene dtxR in C. diphtheriae . Infect. Immun. 59, 1899–1904 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tao, X., Boyd, J. & Murphy, J.R. Specific binding of the diphtheria tox regulatory element DtxR to the tox operator requires divalent cations and a 9-base-pair interrupted palindromic sequence. Proc. Natl. Acad. Sci. USA 89, 5897–5901 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schmitt, M.P. & Holmes, R.K. Analysis of diphtheria toxin repressoroperator interactions and characterization of a mutant represser with decreased binding activity for divalent matals. Mol. Microbiol. 9, 173–181 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Tao, X. & Murphy, J.R. Determination of the DtxR consensus binding site by in vitro affinity selection. Proc. Natl. Acad. Sci. USA 91, 9646–9650 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qiu, X. et al. Three-dimensional structure of the diphtheria toxin represser in complex with divalent cation corepressors. Structure 3, 87–100 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Schiering, N. et al. Structures of the apo- and the metal ion activated forms of the diphtheria tox represser from Corynebacterium diphtheriae. Proc. Natl. Acad. Sci. USA 92, 9843–9850 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, Z., Schmitt, M.P. & Holmes, R.K. Characterization of mutations that inactivate the diphtheria toxin represser (dtxR) . Infect. Immun. 62, 1600–1608 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tao, X., Zeng, H. & Murphy, J.R. Transition metal ion activation of DNA binding by the diphtheria tox represser requires the formation of stable homodimers. Proc. Natl. Acad. Sci. USA 92, 6803–6807 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tao, X. & Murphy, J.R. Cysteine-102 is positioned in the metal ion activation site of the Corynebacterium diphtheriae regulatory element DtxR. Proc. Natl. Acad. Sci. USA 90, 8524–8528 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sanger, F., Nicklen, S. & Coulsen, A.R. DNA sequencing with with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kraft, R., Tardiff, J., Krauter, K.S. & Leinwand, L.A. Using mini-prep plasmid DNA for sequencing double stranded template with sequenase. BioTechniques 6, 544–547 (1988).

    CAS  PubMed  Google Scholar 

  17. Miller, J.H. Experiments in Molecular Genetics (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1972)

    Google Scholar 

  18. Putnam, S.L. & Koch, A.L. Complications in the simplest cellular assay: Lysis of Escherichia coli for the assay of β-galactosidase. Anal. Biochem. 63, 350–360 (1975).

    Article  CAS  PubMed  Google Scholar 

  19. Brünger, A.T., Karplus, M. & Kuriyan, J. Crystallographic R-factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  PubMed  Google Scholar 

  20. Brünger, A.T. Crystallographic refinement by simulate annealing: application to a 2.8Å resolution structure of aspartate aminotransferase. J. Mol. Biol. 203, 803–816 (1988).

    Article  PubMed  Google Scholar 

  21. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, X., Zeng, H., Schiering, N. et al. Identification of the primary metal ion-activation sites of the diphtheria tox represser by X-ray crystallography and site-directed mutational analysis. Nat Struct Mol Biol 3, 382–387 (1996). https://doi.org/10.1038/nsb0496-382

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0496-382

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing