Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comparison of the free and DNA-complexed forms of the DMA-binding domain from c-Myb

Abstract

The DNA-binding domain of c-Myb consists of three imperfect tandem repeats (R1, R2 and R3). The three repeats have similar overall architectures, each containing a helix-turn-helix variation motif. The three conserved tryptophans in each repeat participate in forming a hydrophobic core. Comparison of the three repeat structures indicated that cavities are found in the hydrophobic core of R2, which is thermally unstable. On complexation with DNA, the orientations of R2 and R3 are fixed by tight binding and their conformations are slightly changed. No significant changes occur in the chemical shifts of R1 consistent with its loose interaction with DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Graf T. Myb: A transcriptional activator linking proliferation and differentiation in hematopoietic cells. Curr. Opin. Gen. Dev. 2, 249–255 (1992).

    CAS  Google Scholar 

  2. Lüscher, B. & Eisenman, R.N. New light on Myc and Myb. PartII. Myb. Genes Dev. 4, 2235–2241 (1990).

    PubMed  Google Scholar 

  3. Biedenkapp, H., Borgmeyer, U., Sippel, A.E. & Klempnauer, K.-H. Viral myb oncogene encodes a sequence-specific DNA binding activity. Nature 335, 835–837 (1988).

    CAS  PubMed  Google Scholar 

  4. Weston, K. Extension of the DNA binding consensus of the chicken c-Myb and v-Myb proteins. Nucleic Acids Res. 20, 3043–3049 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tanikawa, J. et al. Recognition of specific DNA sequences by the c-myb proto-oncogene product-role of three repeat units in the DNA-binding domain. Proc. natn. Acad. Sci. U.S.A. 90, 9320–9324 (1993).

    CAS  Google Scholar 

  6. Sakura, H. et al. Delineation of three functional domains of the transcriptional activator encoded by the c-myb proto-oncogene. Proc. natn. Acad. Sci. U.S.A. 86, 5758–5762 (1989).

    CAS  Google Scholar 

  7. Gonda, T.J., Gough, N.M., Dunn, A.R. & de Blaquiere, J. Nucleotide sequence of cDNA clones of the murine myb proto-oncogene. EMBO J. 4, 2003–2008 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Klempnauer, K.-H. & Sippel, A.E. The highly conserved amino-terminal region of the protein encoded by the v-myb oncogene functions as a DNA-binding domain. EMBO J. 6, 2719–2725 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Anton, I.A. & Frampton, J. Tryptophans in myb proteins. Nature 336, 719 (1988).

    CAS  PubMed  Google Scholar 

  10. Frampton, J., Gibson, T.J., Ness, S.A., Doderlein, G. & Graf, T. Proposed structure for the DNA-binding domain of the Myb oncoprotein based on model building and mutational analysis. Prot. Engng 4, 891–901 (1991).

    CAS  Google Scholar 

  11. Kanei-Ishii, C. et al. The tryptophan cluster: a hypothetical structure of the DNA-binding domain of the myb protooncogene product. J. Biol. Chem. 265, 19990–19995 (1990).

    CAS  PubMed  Google Scholar 

  12. Saikumar, P., Murali, R. & Reddy, E.P. Role of tryptophan repeats and flanking amino acids in Myb-DNA interactions. Proc. natn. Acad. Sci. U.S.A. 87, 8452–8456 (1990).

    CAS  Google Scholar 

  13. Gabrielsen, O.S., Sentenac, A. & Fromageot, P. Specific DNA binding by c-Myb: Evidence for a double helix-turn-helix-related motif. Science 253, 1140–1143 (1991).

    CAS  PubMed  Google Scholar 

  14. Sarai, A. et al. Thermal stability of the DNA-binding domain of the Myb oncoprotein. Biochemistry 32, 7759–7764 (1993).

    CAS  PubMed  Google Scholar 

  15. Jamin, N., Gabrielsen, O.S., Gilles, N., Lirsac, P.-N. & Toma, F. Secondary structure of the DNA-binding domain of the c-Myb oncoprotein in solution. Eur. J. Biochem. 216, 147–154 (1993).

    CAS  PubMed  Google Scholar 

  16. Myrset, A.M. et al. DNA and redox state induced conformational changes in the DNA-binding domain of the myb oncoprotein. EMBO J. 12, 4625–4633 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Patel, L., Abate, C. & Curran, T. Altered protein conformation on DNA binding by Fos and Jun. Nature 347, 572–574 (1990).

    CAS  PubMed  Google Scholar 

  18. Ogata, K. et al. Solution structure of a DNA-binding unit of Myb: a helix-turn-helix-related motif with conserved tryptophans forming a hydrophobic core. Proc. natn. Acad. Sci. U.S.A. 89, 6428–6432 (1992).

    CAS  Google Scholar 

  19. Harrison, S.C. & Aggarwal, A.K. DNA recognition by proteins with the helix-turn-helix motif. A. Rev. Biochem. 59, 933–969 (1990).

    CAS  Google Scholar 

  20. Pabo, C.O. & Sauer, R.T. Transcription factors: Structural families and principles of DNA recognition. A. Rev. Biochem. 61, 1053–1095 (1992).

    CAS  Google Scholar 

  21. Ogata, K. et al. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell 79, 639–648 (1994).

    CAS  PubMed  Google Scholar 

  22. Hojo, H. & Aimoto, S. Polypeptide synthesis using the S-alkyl thioester of a partially protected peptide segment. Synthesis of the DNA-binding domain of c-Myb protein (142-193)-NH2 . Bull. chem. Soc. Jpn 64, 111–117 (1991).

    CAS  Google Scholar 

  23. Bender, T.P. & Kuehl, W.M. Murine myb protooncogene mRNA: cDNA sequence and evidence for 5′ heterogeneity. Proc. natn. Acad. Sci. U.S.A. 83, 3204–3208 (1986).

    CAS  Google Scholar 

  24. Nakai, T., Kidera, A. & Nakamura, H. Intrinsic nature of the three-dimensional structure of proteins as determined by distance geometry with good sampling properties. J. biomolec. NMR 3, 19–40 (1993).

    CAS  Google Scholar 

  25. Brennan, R.G. & Matthews, B.W. The helix-turn-helix DNA binding motif. J. biol. Chem. 264, 1903–1906 (1989).

    CAS  PubMed  Google Scholar 

  26. Brennan, R.G. The winged-helix DNA-binding motif: Another helix-turn-helix takeoff. Cell 74, 773–776 (1993).

    CAS  PubMed  Google Scholar 

  27. Introna, M., Golay, J., Frampton, J., Nakano, T., Ness, S.A. & Graf, T. Mutations in v-myb alter the differentiation of myelomonocytic cells transformed by the oncogene. Cell 63, 1287–1297 (1990).

    CAS  Google Scholar 

  28. Ness, S.A., Marknell, A. & Graf, T. The v-myb oncogene product binds to and activates the promyelocyte-specific mim-1 gene. Cell 59, 1115–1125 (1989).

    CAS  PubMed  Google Scholar 

  29. Ness, S.A., Kowentz-Leutz, E., Casini, T., Graf, T. & Leutz, A. Myb and NF-M: combinatorial activators of myeloid genes in heterologous cell types. Gene Dev. 7, 749–759 (1993).

    CAS  PubMed  Google Scholar 

  30. Burk, O., Mink, S., Ringwald, M., and Klempnauer, K.-H. Synergistic activation of the chicken mim-1 gene by v-myb and C/EBP transcription factors. EMBO J. 12, 2027–2038 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pavletich, N.P. & Pabo, C.O. Crystal structure of a five-finger GLI-DNA complex: New perspectives on zinc fingers. Science 261, 1701–1707 (1993).

    CAS  PubMed  Google Scholar 

  32. Klempnauer, K.-H., Gonda, T.J. & Bishop, M.J. Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-myb the architecture of a transduced oncogene. Cell 31, 453–463 (1982).

    CAS  PubMed  Google Scholar 

  33. Dini, P.W. & Lipsick, J.S. Oncogenic truncation of the first repeat of c-Myb decreases DNA binding in vitro and in vivo. Molec. cell. Biol. 13, 7334–7348 (1993).

    CAS  PubMed  Google Scholar 

  34. Messerle, B.A., Wider, G., Otting, G., Weber, C. & Wüthrich, K. Solvent suppression using a spin lock in 2D and 3D NMR spectroscopy with H2O solutions. J. magn. Reson. 85, 608–613 (1989).

    CAS  Google Scholar 

  35. Kay, L.E., Marion, D. & Bax, A. Practical aspects of 3D heteronuclear NMR of proteins. J. magn. Reson. 84, 72–84 (1989).

    CAS  Google Scholar 

  36. Marion, D. et al. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence spectroscopy: Application to interleukin 1β. Biochemistry 28, 6150–6156 (1989).

    CAS  PubMed  Google Scholar 

  37. Frenkiel, T., Bauer, C., Carr, M.D., Birdsall, B. & Feeney, J. HMQC-NOESY-HMQC, a three-dimensional NMR experiment which allows detection of nuclear Overhauser effects between protons with overlapping signals. J. magn. Reson. 90, 420–425 (1990).

    CAS  Google Scholar 

  38. Ikura, M., Bax, A., Clore, G.M. & Gronenborn, A.M. Detection of nuclear Overhauser effects between degenerate amide proton resonances by heteronuclear three-dimensional nuclear magnetic resonance spectroscopy. J. Am. chem. Soc. 112, 9020–9022 (1990).

    CAS  Google Scholar 

  39. Rance, M. et al. Improved spectral resolution in COSY 1H NMR spectra of proteins via double quantum filtering. Biochem. biophys. Res. Commun. 117, 479–485 (1983).

    CAS  PubMed  Google Scholar 

  40. Macura, S. & Ernst, R.R. Elucidation of cross relaxation in liquids by two-dimensional NMR spectroscopy. Molec. Phys. 41, 95–117 (1980).

    CAS  Google Scholar 

  41. Bax, A. & Davis, D.G. MLEV-17 based two dimensional homonuclear magnetization transfer spectroscopy. J. magn. Reson. 65, 355–360 (1985).

    CAS  Google Scholar 

  42. Griesinger, C., Otting, G., Wüthrich, K. & Ernst, R.R. Clean TOCYSY for 1H spin system identification in macromolecules. J. Am. chem. Soc. 110, 7870–7872 (1988).

    CAS  Google Scholar 

  43. Shaka, A.J., Lee, C.J. & Pines, A. Iterative schemes for bilinear operators; Application to spin decoupling. J. magn. Reson. 77, 274–293 (1988).

    Google Scholar 

  44. Cavanagh, J. & Rance, M. Suppression of cross-relaxation effects in TOCSY spectra via a modified DIPSI-2 mixing sequence. J. magn. Reson. 96, 670–678 (1992).

    CAS  Google Scholar 

  45. Rance, M. Improved techniques for homonuclear rotating-frame and isotropic mixing experiments. J. magn. Reson. 74, 557–564 (1987).

    CAS  Google Scholar 

  46. Kim, Y. & Prestegard, J.H. Measurement of vicinal couplings from cross peaks in COSY spectra. J. magn. Reson. 84, 9–13 (1989).

    CAS  Google Scholar 

  47. Driscoll, P.C., Gronenborn, A.M., Beress, L., and Clore, G.M. Determination of the three-dimensional solution structure of the antihypertensive and antiviral protein BDS-1 from the sea anemone Anemonia sulcata: A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28, 2188–2198 (1989).

    CAS  PubMed  Google Scholar 

  48. Wagner, G. et al. Protein structures in solution by nuclear magnetic resonance and distance geometry. The polypeptide fold of the basic pancreatic trypsin inhibitor determined using two different algorithms, DISGEO and DISMAN. J. molec. Biol. 196, 611–639 (1987).

    CAS  PubMed  Google Scholar 

  49. Driscoll, P.C., Clore, G.M., Beress, L. & Gronenborn, A.M. A proton nuclear magnetic resonance study of the antihypertensive and antiviral protein BDS-1 from the sea anemone Anemonia sulcata: Sequential and stereospecific resonance assignment and secondary structure. Biochemistry 28, 2178–2187 (1989).

    CAS  PubMed  Google Scholar 

  50. Kochoyan, M. et al Altering zinc fingers in the human male associated protein ZFY:2D NMR structure of an even finger and implications for “Jumping-Linker” DNA recognition. Biochemistry 30, 3371–3386 (1991).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogata, K., Morikawa, S., Nakamura, H. et al. Comparison of the free and DNA-complexed forms of the DMA-binding domain from c-Myb. Nat Struct Mol Biol 2, 309–320 (1995). https://doi.org/10.1038/nsb0495-309

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0495-309

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing