Article | Published:

High resolution structures of HIV-1 RT from four RT–inhibitor complexes


We have determined the structures of four complexes of HIV-1 reverse transcriptase with non-nucleoside inhibitors, three fully refined at high resolution. The highest resolution structure is of the RT-nevirapine complex which has an R-factor of 0.186 and a root-mean-square bond length deviation of 0.015 Å for all data to 2.2 Å. The structures reveal a common mode of binding for these chemically diverse compounds. The common features of binding are largely hydrophobic interactions and arise from induced shape complementarity achieved by conformational rearrangement of the enzyme and conformational/ conf igurational rearrangement of the compounds.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Barre-Sinoussi, F. et al. Isolation of a T-lymphotropic retrovirus from a patient at risk from acquired immunodeficiency syndrome (AIDS). Science 220, 868–871 (1983).

  2. 2

    Larder, B.A. & Kemp, S.D. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to Zidovudine (AZT). Science 246, 1155–1158 (1989).

  3. 3

    Baba, M. et al. Highly specific inhibition of human immunodeficiency virus type-1 by a novel 6-substituted acyclouridine derivative. biochem. Biophys. Res. Commun. 165, 1375–1381 (1989).

  4. 4

    Pauwels, R. et al. Potent and selective inhibition of HIV-1 replication in vitro by a novel series of TIBO derivatives. Nature 343, 470–474 (1990).

  5. 5

    Merluzzi, V.J. et al. Inhibition of HIV-1 replication by a nonnucleoside reverse transcriptase inhibitor. Science 250, 1411–1413 (1990).

  6. 6

    Pauwels, R. et al. Potent and highly selective HIV-1 inhibition by a new series of α-anilino phenyl acetamide (α-APA) derivatives targeted at HIV-1 reverse transcriptase. Proc. natn. Acad. Sci. U.S.A. 90, 1711–1715 (1993).

  7. 7

    Wu, J.C. et al. A novel dipyridodiazepinone inhibitor of HIV-1 reverse transcriptase acts through a non-substrate binding site. Biochemistry 30, 2022–2026 (1991).

  8. 8

    Debyser, Z. et al. An antiviral target on reverse transcriptase of human immunodeficiency virus type 1 revealed by tetrahydroimidazo-[4,5 1-jk][1,4]benzodiazepine-2(1H)-one and-thione derivatives. Proc. natn. Acad. Sci. U.S.A. 88, 1451–1455 (1991).

  9. 9

    Kohlstaedt,L.A., Wang, J., Friedman, J.M., Rice, P.A. & Steitz, T.A. Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256, 1783–1790 (1992).

  10. 10

    Richman, D. et al. Human immunodeficiency virus type 1 mutants resistant to non-nucleoside inhibitors of reverse transcriptase arise in tissue culture. Proc. natn. Acad. Sci. U.S.A. 88, 11241–11245 (1991).

  11. 11

    Richman, D.D. et al. Nevirapine resistance mutations of immunodeficiency virus type 1 selected during therapy. J. Virol. 68, 1660–1666 (1994).

  12. 12

    Larder, B.A. Interactions between drug resistance mutations in human immunodeficiency virus type 1 reverse transcriptase. J. gen. Virol. 75, 951–957 (1994).

  13. 13

    De Clercq, E. HIV resistance to reverse transcriptase inhibitors. Biochem. Pharmacol. 47, 155–169 (1994).

  14. 14

    Schinazi, R., Larder, B.A. & Mellors, J. Mutations in HIV-1 reverse transcriptase and protease associated with drug resistance. Int. Antiviral News 2, 72–75 (1994).

  15. 15

    Jones, E.Y. et al. The growth and characterization of crystals of human immunodeficiency virus (HIV) reverse transcriptase. J. crystal Growth 126, 261–269 (1993).

  16. 16

    Smerdon, S.J. et al. Structureof the binding site for nonnucleoside inhibitors of the reverse transcriptase of human immunodeficiency virus type 1. Proc. natn. Acad. Sci. U.S.A. 91, 3911–3915 (1994).

  17. 17

    Jacobo-Molina, A. et al. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DMA at 3.0 Å resolution shows bent DMA. Proc. natn. Acad. Sci. U.S.A. 90, 6320–6324 (1993).

  18. 18

    Unge, T. et al. 2.2 Å resolution structure of the amino-terminal half of HIV-1 reverse transcriptase (fingers and palm subdomains). Structure 2, 953–961 (1994).

  19. 19

    Davies, I.J.F., Hostomska, Z., Hostomsky, Z., Jordan, S.R. & Matthews, D.A. Crystal structure of the Ribonuclease H domain of HIV-1 reverse transcriptase. Science, 252, 88–95 (1991).

  20. 20

    Hargrave, K.D. et al. Novel non-nucleoside inhibitors of HIV-1 reverse transcriptase. 1. Tricyclic pyridobenzo- and dipyridodiaze-pinones. J. med. Chem. 34, 2231–2241 (1991).

  21. 21

    Esnouf, R. et al. Mechanism of inhibition of HIV-1 reverse transcriptase by Non-nucleoside Inhibitors. Nature struct. Biol. 2, 303–308 (1995).

  22. 22

    Stammers, D.K. et al. Crystals of HIV-1 reverse transcriptase diffracting to 2.2 Å resolution. J. molec. Biol. 242, 586–588 (1994).

  23. 23

    Yuasa, S. et al. Selective and synergistic inhibition of human immunodeficiency virus type 1 reverse transcriptase by a non-nucleoside inhibitor, MKC-442. Molec. Pharmacol 44, 895–900 (1993).

  24. 24

    Balzarini, J., Karlsson, A. & De Clercq, E. Human immunodeficiency virus type 1 drug-resistance patterns with different 1-[-hydroxyethoxymethyl]-6-phenylthiothymine derivatives. Molec. Pharmacol. 44, 694–701 (1993).

  25. 25

    Byrnes, V.W. et al. Comprehensive mutant enzyme and viral variant assessment of human immunodeficiency virus type 1 reverse transcriptase resistance to nonnucleoside inhibitors. Antimicrob. Agents Chemother. 37, 1576–1579(1993).

  26. 26

    Balzarini, J. et al. HIV-1 specific reverse transcriptase inhibitors show differential activity against HIV-1 mutant strains containing different amino acid substitutions in the reverse transcriptase. Virology 192, 246–253 (1993).

  27. 27

    Balzarini, J. et al. Human immunodeficiency virus 1 (HIV-1)-specific reverse transcriptase (RT) inhibitors may suppress the replication of specific drug-resistant E138K RT HIV-1 mutants or select for highly resistant Y181C—C1811 RT HIV-1 mutants. Proc. natn. Acad. Sci. U.S.A. 91, 6599–6603 (1994).

  28. 28

    Mellors, J.W. et al. Rapid emergence of HIV-1 resistant to nonnucleoside inhibitors of reverse transcriptase. Antiviral Res. 17 S1, 48 (1992).

  29. 29

    Sardana, V.V. et al. Functional analysis of HIV-1 reverse transcriptase amino acids involved in resistance to multiple nonnucleoside inhibitors. J. biol.Chem. 267, 17526–17530 (1992).

  30. 30

    Dueweke, T.J. et al. A mutation in reverse transcriptase of bisheteroarylpiperazine-resistant human immunodeficiency virus type 1 that confers increased sensitivity to other nonnucleoside inhibitors. Proc. natn. Acad. Sci. U.S.A. 90, 4713–4717 (1993).

  31. 31

    Maass, G. et al. Viral resistance to the thiazolo-iso-indolineones, a new class of nonnucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase. Antimicrob. Agents Chemother. 37, 2612–2617 (1993).

  32. 32

    Vandamme, A.-M. et al. Characterization of HIV-1 strains isolated from patients treated with TIBO R82913. AIDS Res. hum. Retroviruses 10, 39–46 (1994).

  33. 33

    Balzarini, J. et al. Treatment of human immunodeficiency virus type 1 (HIV-1 )-infected cells with combinations of HIV-1-specific inhibitors results in a different resistance pattern than does treatment with single-drug therapy. J. Virol. 67, 5353–5359 (1993).

  34. 34

    Nunberg, J.H. et al. Viral resistance to human immunodeficiency virus type-1-specific pyridinone reverse transcriptase inhibitors. J. Virol. 65, 4887–4892 (1991).

  35. 35

    Jacques, P.S., Wohrl, B.M., Howard, K.J. & Le Grice, S.F.J. Modulation of HIV-1 reverse transcriptase function in “selectively deleted” p66/p51 heterodimers. J. biol. Chem. 269, 1388–1393 (1994).

  36. 36

    Sakabe, N. X-ray diffraction data collection system for modern protein crystallography with a Weissenberg camera and an imaging plate using synchrotron radiation. Nucl. instr. Methods phys. Res 303, 448–463 (1991).

  37. 37

    Stuart, D.I. & Jones, E.Y. Weissenberg data collection for macromolecular crystallography. Curr. Opin. struct. Biol. 3, 737–740 (1993).

  38. 38

    Higashi,T. J. Auto-indexing of oscillation images. J. appl. Crystallogr. 23, 253–257 (1990).

  39. 39

    Otwinowski, Z. Oscillation data reduction program, in Data collection and Processing ( eds. Sawyer, L., Isaacs, N. & Bailey, S.) 56–62 (SERC Daresbury Laboratory, Warrington, England; 1993).

  40. 40

    Brunger, A.T. V3.1., X-PLOR Manual. (Yale University, New Haven, CT; 1992).

  41. 41

    CCP4. The CCP4 suite: programs for protein crystallography. Acta crystallogr. D50, 760–763 (1994).

  42. 42

    Brünger, A.T., Krukowski, A. & Erickson, J. Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta crystallogr. A46, 585–593 (1990).

  43. 43

    Jones, T.A. Interactive computer graphics: FRODO. Meths Enzymol. 115, 157–171 (1985).

  44. 44

    Debyser, Z. et al. Allosteric inhibition of human immunodeficiency virus type 1 reverse transcriptase by tetrahydroimidazo[4,5,1-jk][1,4]benzodiazepin-2(1 H)-one and -thione compounds. Molec. Pharmacol. 41, 203–208 (1992).

  45. 45

    Stuart, D.I., Levine, M., Muirhead, H. & Stammers, D.K. The crystal Structure of cat pyruvate kinase at a resolution of 2. 6 Å. J molec. Biol. 134, 109–142 (1979).

  46. 46

    Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta crystallogr. A47, 110–119 (1991).

  47. 47

    Kabsch, W. & Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22. 2577–2637 (1983).

  48. 48

    Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

  49. 49

    Merritt, E.A. & Murphy, M.E.P. Raster3D version 2.0. A program for photorealistic molecular graphics. Acta crystallogr. D50, 869–873 (1994).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading