Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bipartite structure of the α-lactalbumin molten globule

Abstract

Molten globules are thought to be general intermediates in protein folding. Apparently conflicting studies have failed to clarify whether one of the best characterized molten globules, that of α-lactalbumin, resembles an expanded native-like protein or a nonspecific collapsed polypeptide. Here we show that the molten globule properties of α-lactalbumin are largely confined to one of its two domains. The α-helical domain forms a helical structure with a native-like tertiary fold, while the β-sheet domain is largely unstructured. Molten globules thus possess a native-like backbone topology, but this topology does not necessarily encompass the entire polypeptide chain. Our studies indicate that molten globules provide an approximate solution to, and considerable simplification of the protein folding problem.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ptitsyn, O.B. The molten globule state, in Protein Folding (Ed. Creighton, T.E.) 243–300. (W.H. Freeman and Co., New York, 1993).

    Google Scholar 

  2. Bychkova, V.E. & Ptitsyn, O.B. The molten globule in vitro and in vivo. Chemtracts — Biochem. molec. Biol. 4, 133–163 (1993).

    CAS  Google Scholar 

  3. Kuwajima, K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins 6, 87–103 (1989).

    Article  CAS  Google Scholar 

  4. Haynie, D.T. & Friere, E. Structural energetics of the molten globule state. Proteins 16, 115–140 (1993).

    Article  CAS  Google Scholar 

  5. Christensen, H. & Pain, R.H. Molten globule intermediates and protein folding. Eur. biophys. J. 19, 221–229 (1991).

    Article  CAS  Google Scholar 

  6. Dobson, C.M. Unfolded proteins, compact states, and molten globules. Curr. Opin. struct. Biol. 2, 6–12 (1992).

    Article  CAS  Google Scholar 

  7. Kuwajima, K., Nitta, K., Yoneyama, M. & Sugai, S. Three-state denaturation of α-Lactalbumin by guanidine hydrochloride. J. molec. Biol. 106, 359–373 (1976).

    Article  CAS  Google Scholar 

  8. Dolgikh, D.A. et al. α-Lactalbumin: compact state with fluctuating tertiary structure. FEBS Letts 136, 311–315 (1981).

    Article  CAS  Google Scholar 

  9. Dolgikh, D.A. et al. Compact state of a protein molecule with pronounced small-scale mobility: bovine α-Lactalbumin. Eur. biophys. J. 13, 109–121 (1985).

    Article  CAS  Google Scholar 

  10. Baum, J., Dobson, C.M., Evans, P.A. & Hanley, C. Characterization of a partly folded protein by NMR methods: studies on the molten globule state of guinea pig α-Lactalbumin. Biochemistry 28, 7–13 (1989).

    Article  CAS  Google Scholar 

  11. Alexandrescu, A.T., Evans, P.A., Pitkeathly, M., Baum, J . & Dobson, C.M. Structure and dynamics of the acid-denatured molten globule state of α-Lactalbumin: a two-dimensional NMR study. Biochemistry 32, 1707–1718 (1993).

    Article  CAS  Google Scholar 

  12. Xie, D., Bhakuni, V. & Freire, E. Calorimetric determination of the energetics of the molten globule intermediate in protein folding: Apo-α-Lactalbumin. Biochemistry 30, 10673–10678 (1991).

    Article  CAS  Google Scholar 

  13. Ewbank, J.J. & Creighton, T.E. The molten globule protein conformation probed by disulphide bonds. Nature 350, 518–520 (1991).

    Article  CAS  Google Scholar 

  14. Creighton, T.E. & Ewbank, J.J. Disulphide-rearranged molten globule state of α-Lactalbumin. Biochemistry 33, 1534–1538 (1994).

    Article  CAS  Google Scholar 

  15. Peng, Z.-y. & Kim, P.S. A protein dissection study of a molten globule. Biochemistry 33, 2136–2141 (1994).

    Article  CAS  Google Scholar 

  16. Peng, Z.-y., Wu, L.C. & Kim, P.S. Local structural preferences in the α-Lactalbumin molten globule. Biochemistry, in the press.

  17. Redfield, C., Smith, R.A.G. & Dobson, C.M. Structural characterization of a highly-ordered ‘molten globule’ at low pH. Nature struct. Biol. 1, 23–29 (1994).

    Article  CAS  Google Scholar 

  18. Feng, Y., Sligar, S.G. & Wand, A.J. Solution structure of apocytochrome b562. Nature struct. Biol. 1, 30–35 (1994).

    Article  CAS  Google Scholar 

  19. Miranker, A., Robinson, C.V., Radford, S.E., Alpin, R.T. & Dobson, C.M. Detection of transient protein folding populations by mass spectrometry. Science 262, 896–900 (1993).

    Article  CAS  Google Scholar 

  20. Radford, S.E., Dobson, C.M. & Evans, P.A. The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature 358, 302–307 (1992).

    Article  CAS  Google Scholar 

  21. Kuwajima, K., Hiraoka, Y., Ikeguchi, M. & Sugai, S. Comparison of the transient folding intermediates in lysozyme and α-Lactalbumin. Biochemistry 24, 874–881 (1985).

    Article  CAS  Google Scholar 

  22. Ikeguchi, M., Kuwajima, K., Mitani, M. & Sugai, S. Evidence for identity between the equilibrium unfolding intermediate and a transient folding intermediate: a comparitive study of the folding reactions of α-Lactalbumin and lysozyme. Biochemistry 25, 6965–6972 (1986).

    Article  CAS  Google Scholar 

  23. Gilmanshin, R.I. & Ptitsyn, O.B. An early intermediate of refolding α-Lactalbumin forms within 2 ms. FEBS Letters 223, 327–329 (1987).

    Article  CAS  Google Scholar 

  24. Wetlaufer, D.B., ion, rapid folding, and globular intrachain regions in proteins. Proc. natn. Acad. Sci. U.S.A. 70, 697–701 (1973).

    Article  CAS  Google Scholar 

  25. Jaenicke, R. Protein folding: local structures, domain, subunits, and assemblies. Biochemistry 30, 3147–3161 (1991).

    Article  CAS  Google Scholar 

  26. Levinthal, C. Are there pathways for protein folding? J. chim. Phys. 65, 44–45 (1968).

    Article  Google Scholar 

  27. Kunkel, T.A., Roberts, J.D. & Zakour, R.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Meths Enz. 154, 367–382 (1987).

    CAS  Google Scholar 

  28. Doering, D.S. Functional and structural studies of a small f-actin binding protein, (Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, 1992).

    Google Scholar 

  29. Studier, F.W., Rosenberg, A.H., Dunn, J.J. & Dubendorff, J.W. Use of T7 RNA polymerase to direct expression of cloned genes. Meths Enz. 185, 60–89 (1990).

    CAS  Google Scholar 

  30. Ellman, G.L. Tissue sulphydryl groups. Arch. Biochem. Biophys. 82, 70–77 (1959).

    Article  CAS  Google Scholar 

  31. Edelhoch, H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948–1954 (1967).

    Article  CAS  Google Scholar 

  32. Chen, Y.-H., Yang, J.T. and Chau, K.H. Determination of the helix and β form of proteins in aqueous solution by circular dichroism. Biochemistry 13, 3350–3359 (1974).

    Article  CAS  Google Scholar 

  33. Laue, T.M., Shah, B.D., Ridgeway, T.M. & Pelletier, S.L. Computer-aided interpretation of analytical sedimentation data for proteins. in Analytical Ultracentrifugation in Biochemistry and Polymer Science (eds Harding, S.E. et al.) pp. 90–125. (The Royal Society of Chemistry, Cambridge, (1992).

    Google Scholar 

  34. Acharya, K.R., Ren, J., Stuart, D.I., Phillips, D.C. & Fenna, R.E. Crystal structure of human α-Lactalbumin at 1.7 Å resolution. J. molec. Biol. 221, 571–581 (1991).

    Article  CAS  Google Scholar 

  35. Priestle, J.P. RIBBON: A stereo cartoon drawing program for proteins. J. appl. Crystallogr. 21, 572–576 (1988).

    Article  Google Scholar 

  36. Kauzmann, W. in Sulphur in proteins (Eds Benesch, R. et al.) 93–108 (Academic Press, New York, (1959).

    Google Scholar 

  37. Privalov, P.L. Stability of proteins: proteins which do not present a single cooperative system. Adv. Protein Chem. 35, 1–104 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Peng, Zy. & Kim, P. Bipartite structure of the α-lactalbumin molten globule. Nat Struct Mol Biol 2, 281–286 (1995). https://doi.org/10.1038/nsb0495-281

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0495-281

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing