Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Signal transduction versus buffering activity in Ca2+–binding proteins

Abstract

The three–dimensional structure of calbindin D9k in the absence of Ca2+ has been determined using NMR spectroscopy in solution, allowing the first direct analysis of the consequences of Ca2+ binding for a member of the calmodulin superfamily of proteins. The overall response in calbindin D9k is much attenuated relative to the current model for calmodulin and troponin C. These results demonstrate a novel mechanism for modulating the conformational response to Ca2+–binding in calmodulin superfamily proteins and provide insights into how their Ca2+–binding domains can be fine–tuned to remain essentially intact or respond strongly to ion binding, in relation to their functional requirements.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Klee, C.B. & Vanaman, T.C. Calmodulin. Adv. Protein Chem. 35, 213–321 (1982).

    Article  CAS  Google Scholar 

  2. Klee, C.B. Molecular aspects of cellular regulation. in Calmodulin (eds Cohen, P. & Klee, C.B.) 35–56 (Elsevier, New York, 1988).

    Google Scholar 

  3. Anghileri, L.J. in The role of calcium in biological systems. (CRC Press, Inc., Boca Raton, FL, 1990).

    Google Scholar 

  4. Pochet, R., Lawson, D.E. & Heizman, C.W. Calcium-binding proteins in normal and transformed cells (Plenum Press, New York, 1990).

    Book  Google Scholar 

  5. Whitfield, J.F. Calcium, Cell Cycles and Cancer (CRC Press, Inc, Boca Raton, FL, 1990).

    Google Scholar 

  6. da Silva, F.C. & Reinach, A.C.R. Calcium-induced conformational changes in muscle regulatory proteins. Trends biochem. Sci. 16, 53–57 (1991).

    Article  Google Scholar 

  7. Kretsinger, R.H. & Nockolds, C.E. Carp muscle calcium bindingprotein: Structure determination and general description. J. biol. Chem. 248, 3313–3326 (1973).

    CAS  Google Scholar 

  8. Moncrief, N.D., Kretsinger, R.H. & Goodman, M. Evolution of EF-hand calcium-modulated proteins I. Relationships based on amino acid sequences. J. molec. Evol. 30, 522–562 (1990).

    Article  CAS  Google Scholar 

  9. Strynadka, N.C.J. & James, M.N.G. Crystal structures of the helix-loop-helix calcium-binding proteins. Rev. Biochem. 58, 951–998 (1989).

    Article  CAS  Google Scholar 

  10. Kakayama, S., Moncrief, N.D. & Kretsinger, R.H. Evolution of EF-hand calcium-modulated proteins II. Domains of several subfamilies have diverse evolutionary histories. J. molec. Evol. 34, 416–448 (1992).

    Article  Google Scholar 

  11. Szebenyi, D.M.E. & Moffat, K. The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. Molecular details, ion binding, and implications for the structure of other calcium-binding proteins. J. biol. Chem. 261, 8761 (1986).

    CAS  PubMed  Google Scholar 

  12. Hilt, D. & Kligman, D.C. Novel calcium-binding proteins in The S-100 protein family: a biochemical and functional overview (ed. Heizmann, C.W.). 65–103 (Springer Verlag, Berlin, 1991).

    Google Scholar 

  13. Strynadka, N.C.J. & James, M.N.G. Towards an understanding of the effects of calcium on protein structure and function. Curr. Opin. struct. Biol. 1, 905–914 (1991).

    Article  CAS  Google Scholar 

  14. Clore, G.M. & Gronenborn, A.M. Determination of three-dimensional structures of proteins and nucleic acids in solution by nuclear magnetic resonance spectroscopy. Crit. Rev. Biochem. molec. Biol. 24, 479–564 (1989).

    Article  CAS  Google Scholar 

  15. Wüthrich, K. Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science 243, 45–50 (1989).

    Article  Google Scholar 

  16. Kördel, J., Skelton, N.J., Akke, M. & Chazin, W.J. High resolution solution structure of calcium-loaded calbindin D9k . J. molec. Biol. 231, 711–734 (1993).

    Article  Google Scholar 

  17. Skelton, N.J., Forsén, S. & Chazin, W.J. 1H NMR resonance assignments, secondary structure, and global fold of Apo bovine calbindin D9k . Biochemistry 29, 5752–5761 (1990).

    Article  CAS  Google Scholar 

  18. Skelton, N.J., Kördel, J., Forsén, S. & Chazin, W.J. Comparative structural analysis of the calcium free and bound states of the calcium regulatory protein Calbindin D9k . J. molec. Biol. 213, 593–598 (1990).

    Article  CAS  Google Scholar 

  19. Hyberts, S., Goldberg, M.S., Havel, T.F. & Wagner, G. The solution structure of eglin C based on measurements of many NOEs and coupling constants and its comparison with X-ray structures. Protein Sci. 1, 736–751 (1992).

    Article  CAS  Google Scholar 

  20. Kördel, J., Skelton, N.J., Akke, M., Palmer, A.G. & Chazin, W.J. Backbone dynamics of calcium-loaded calbindin D9k studied by two-dimensional proton-detected NMR spectroscopy. Biochemistry 31, 4856–4866 (1992).

    Article  Google Scholar 

  21. Akke, M., Kördel, J., Skelton, N.J., Palmer, A.G. & Chazin, W.J. Effects of ion binding on the backbone dynamics of calbindin D9k determined by 15N relaxation. Biochemistry 32, 8932–8944 (1993).

    Article  Google Scholar 

  22. Herzberg, O., Moult, J. & James, M.N.G. A model for the Ca2+-induced conformational transition of troponin CA trigger for muscle contraction. J. biol. Chem. 261, 2638–2644 (1986).

    CAS  Google Scholar 

  23. Herzberg, O. & James, M.N.G. Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 Å resolution. J. molec. Biol. 203, 761–779 (1988).

    Article  CAS  Google Scholar 

  24. Cachia, P.J. et al. Calmodulin and troponin C: A comparative study of the interaction of mastoparan and troponin I inhibitory peptide [104–115]. Biochemistry 25. 3533–3562 (1986).

    Article  Google Scholar 

  25. Campbell, A.P. & Sykes, B.D. Theoretical evaluation of the two-dimensional transferred nuclear Overhauser effect. J. magn. Res. 93, 77–92 (1991).

    CAS  Google Scholar 

  26. Babu, Y.S., Bugg, C.E. & Cook, W.J. Structure of Calmodulin at 2.2 Å resolution. J. molec. Biol. 204, 191–204 (1988).

    Article  CAS  Google Scholar 

  27. Ikura, M. et al. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 256, 632–638 (1992).

    Article  CAS  Google Scholar 

  28. Adelstein, R.S. & Eisenberg, E.A. Regulation and kinetics of the actin-myosin-ATP interaction. A. Rev. Biochem. 49, 921–956 (1980).

    Article  CAS  Google Scholar 

  29. Christakos, S., Gabrielides, C. & Rothen, W.B., D-dependent calcium-binding proteins: chemistry, distribution, functional considerations and molecular biology. Endocrine Rev. 10, 3–26 (1989).

    Article  CAS  Google Scholar 

  30. Staun, M. Calbindin-D9k of human small intestine and kidney Purification, molecular properties and clinical significance. Dan. med. Bull. 38, 271–282 (1991).

    CAS  PubMed  Google Scholar 

  31. James, P., Vorherr, T., Thulin, E., Forsén, S. & Carafoli, E. Identification and primary structure of a calbindin D9k binding domain in the plasma membrane Ca2+ pump. FEBS Lett. 278, 155–159 (1991).

    Article  CAS  Google Scholar 

  32. Kligman, D. & Hilt, D.C. The S100 protein family. Trends biol. Sci. 13, 437–443 (1988).

    Article  CAS  Google Scholar 

  33. Brodin, P. et al. Expression of bovine intestinal calcium-binding protein from a synthetic gene in Escherichia coli. Biochemistry 25, 5371–5377 (1986).

    Article  CAS  Google Scholar 

  34. Chazin, W.J. et al. Identification of an isoaspartyl linkage formed upon deamidation of bovine calbindin D9k and structural characterization by 2D 1H NMR. Biochemistry 28, 8646–8653 (1989).

    Article  CAS  Google Scholar 

  35. Chazin, W.J. et al. Proline isomerization leads to multiple folded conformations of calbindin D9k: direct evidence from two-dimensional 1H-NMR spectroscopy. Proc. natl. Acad. Sci. U.S.A. 86, 2195–2198 (1989).

    Article  CAS  Google Scholar 

  36. Plateau, P. & Guéron, M. Exchangeable proton NMR without baseline distortion, using new strong-pulse sequences. J. Am. chem. Soc. 104, 7310–7311 (1982).

    Article  CAS  Google Scholar 

  37. Skelton, N.J. et al. 15N NMR assignments and chemical shift analysis of uniformly labeled 15N calbindin D9k in the apo, (Cd2+)1, and (Ca2+)2 states. FEBS Lett. 303, 136–140 (1992).

    Article  CAS  Google Scholar 

  38. Akke, M., Drakenberg, T. & Chazin, W.J. Three dimensional structure of Ca2+-loaded porcine calbindin D9k determined by NMR Spectroscopy. Biochemistry 31, 1011–1020 (1992).

    Article  CAS  Google Scholar 

  39. Skelton, N.J. & Chazin, W.J. J. Cellular Biochem. 17C, 257 (1993).

    Google Scholar 

  40. Havel, T. & Wüthrich, K. A distance geometry program for determining the structures of small proteins and other macromolecules from nuclear magnetic resonance measurements of intramolecular 1H - 1H proximities in solution. Bull. math. Biol. 46, 673–698 (1984).

    CAS  Google Scholar 

  41. Pearlman, D.A. et al. AMBER version 4.0. (University of California, San Francisco, 1991).

    Google Scholar 

  42. Pearlman, D.A., Case, D.A. & Yip, P. SANDERIAMBER version 4.0. (University of California, San Francisco, 1991).

    Google Scholar 

  43. Ferrin, T.E., Huang, C.C., Jarvis, L.E. & Langridge, R. The MIDAS display system. J. molec. Graphics 6, 13–27 (1988).

    Article  CAS  Google Scholar 

  44. Bernstein, F.C. et al. The Protein Data Bank: a computer based archival file for macromolecular structures. J. molec. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  45. Upson, C. The application visualization system: A computational environment for scientific visualization. IEEE Comput. Graph. Applic. 9, 30–42 (1989).

    Article  Google Scholar 

  46. Connolly, M.L. Solvent-accessible surfaces of proteins and nucleic acids. Science 221, 709–713 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Skelton, N., Kördel, J., Akke, M. et al. Signal transduction versus buffering activity in Ca2+–binding proteins. Nat Struct Mol Biol 1, 239–245 (1994). https://doi.org/10.1038/nsb0494-239

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0494-239

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing