Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multistep assembly of the protein import channel of the mitochondrial outer membrane

Abstract

Proteins targeted to mitochondria are transported into the organelle through a high molecular weight complex called the translocase of the outer mitochondrial membrane (TOM). At the core of this machinery is a multisubunit general import pore (GIP) of 400 kDa. Here we report the assembly of the yeast GIP that involves two successive intermediates of 250 kDa and 100 kDa. The precursor of the channel-lining Tom40 is first targeted to the membrane via the receptor proteins Tom20 and Tom22; it then assembles with Tom5 to form the 250 kDa intermediate exposed to the intermembrane space. The 250 kDa intermediate is followed by the formation of the 100 kDa intermediate that associates with Tom6. Maturation to the 400 kDa complex occurs by association of Tom7 and Tom22. Tom7 functions by promoting both the dissociation of the 400 kDa complex and the transition from the 100 kDa intermediate to the mature complex. These results indicate that the dynamic conversion between the 400 kDa complex and the 100 kDa late intermediate allows integration of new precursor subunits into pre-existing complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assembly of the precursors of small Tom proteins and Tom22 into the 400K GIP complex of yeast mitochondria.
Figure 2: Intermediate complexes in the assembly of Tom40 into the 400K GIP complex.
Figure 3: Tom40 within the 250K intermediate is peripherally membrane-associated and exposed to the intermembrane space.
Figure 4: Influence of tom deletion mutants on the formation of GIP assembly complexes.
Figure 5: Mitochondria lacking Tom7 generate Tom40 assembly complexes of larger size.
Figure 6: Association of Tom proteins with Tom40 during assembly.
Figure 7: Tom7 is involved in the assembly of imported Tom6 into the 400K complex.
Figure 8

Similar content being viewed by others

References

  1. Schatz, G. & Dobberstein, B. Common principles of protein translocation across Membranes. Science 271, 1519–1526 (1996).

    Article  CAS  Google Scholar 

  2. Neupert, W. Protein import into mitochondria. Annu. Rev. Biochem. 66, 863–917 (1997).

    Article  CAS  Google Scholar 

  3. Pfanner, N., Craig, E.A. & Hönlinger, A. Mitochondrial preprotein translocase. Annu. Rev. Cell Dev. Biol. 13, 25–51 (1997).

    Article  CAS  Google Scholar 

  4. Jensen, R.E. & Johnson, A.E. Protein translocation: is Hsp70 pulling my chain? Curr. Biol. 9, R779–782 (1999).

    Article  CAS  Google Scholar 

  5. Hill, K. et al. Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395, 516–521 (1998).

    Article  CAS  Google Scholar 

  6. van Wilpe, S. et al. Tom22 is a multifunctional organizer of the mitochondrial preprotein translocase. Nature 401, 485–489 (1999).

    Article  CAS  Google Scholar 

  7. Rapaport, D. et al. Dynamics of the Tom complex of mitochondria during binding and translocation of preproteins. Mol. Cell. Biol. 18, 5256–5262 (1998).

    Article  CAS  Google Scholar 

  8. Dekker, P.J.T. et al. Preprotein translocase of the outer mitochondrial membrane: molecular dissection and assembly of the general import pore complex. Mol. Cell. Biol. 18, 6515–6524 (1998).

    Article  CAS  Google Scholar 

  9. Künkele, K.P. et al. The preprotein translocation channel of the outer membrane of mitochondria. Cell 93, 1009–1019 (1998).

    Article  Google Scholar 

  10. Dietmeier, K. et al. Tom5 functionally links mitochondrial preprotein receptors to the general import pore. Nature 388, 195–200 (1997).

    Article  CAS  Google Scholar 

  11. Kassenbrock, C.K., Cao, W. & Douglas, M.G. Genetic and biochemical characterization of ISP6, a small mitochondrial outer membrane protein associated with the protein translocation complex. EMBO J. 12, 3023–3034 (1993).

    Article  CAS  Google Scholar 

  12. Alconada, A., Kübrich, M., Moczko, M., Hönlinger, A. & Pfanner, N. The mitochondrial receptor complex: the small subunit Mom8b/Isp6 supports association of receptors with the general insertion pore and transfer of preproteins. Mol. Cell. Biol. 15, 6196–6205 (1995).

    Article  CAS  Google Scholar 

  13. Hönlinger, A. et al. Tom7 modulates the dynamics of the mitochondrial outer membrane translocase and plays a pathway-related role in protein import. EMBO J. 15, 2125–2137 (1996).

    Article  Google Scholar 

  14. Baker, K.P., Schaniel, A., Vestweber, D. & Schatz, G. A yeast mitochondrial outer membrane protein essential for protein import and cell viability. Nature 348, 605–609 (1990).

    Article  CAS  Google Scholar 

  15. Ramage, L., Junne, T., Hahne, K., Lithgow, T. & Schatz, G. Functional cooperation of mitochondrial protein import receptors in yeast. EMBO J. 12, 4115–4123 (1993).

    Article  CAS  Google Scholar 

  16. Moczko, M. et al. Deletion of the receptor MOM19 strongly impairs import of cleavable preproteins into Saccharomyces cerevisiae mitochondria. J. Biol. Chem. 269, 9045–9051 (1994).

    CAS  PubMed  Google Scholar 

  17. Schneider, H. et al. Targeting of the master receptor MOM19 to mitochondria. Science 254, 1659–1662 (1991).

    Article  CAS  Google Scholar 

  18. Keil, P. & Pfanner, N. Insertion of MOM22 into the mitochondrial outer membrane strictly depends on surface receptors. FEBS Lett. 321, 197–200 (1993).

    Article  CAS  Google Scholar 

  19. Keil, P. et al. Biogenesis of the mitochondrial receptor complex: two receptors are required for binding of MOM38 to the outer membrane surface. J. Biol. Chem. 268, 19177–19180 (1993).

    CAS  PubMed  Google Scholar 

  20. Schlossmann, J. & Neupert, W. Assembly of the preprotein receptor Mom72/Mas70 into the protein import complex of the outer membrane of mitochondria. J. Biol. Chem. 270, 27116–27121 (1995).

    Article  CAS  Google Scholar 

  21. Rapaport, D. & Neupert, W. Biogenesis of Tom40, core component of the TOM complex of mitochondria. J. Cell Biol. 146, 321–331 (1999).

    Article  CAS  Google Scholar 

  22. Lithgow, T., Junne, T., Suda, K., Gratzer, S. & Schatz, G. The mitochondrial outer membrane protein Mas22p is essential for protein import and viability of yeast. Proc. Natl. Acad. Sci. USA 91, 11973–11977 (1994).

    Article  CAS  Google Scholar 

  23. Hönlinger, A. et al. The mitochondrial receptor complex: Mom22 is essential for cell viability and directly interacts with preproteins. Mol. Cell. Biol. 15, 3382–3389 (1995).

    Article  Google Scholar 

  24. Kurz, M., Martin, H., Rassow, J., Pfanner, N. & Ryan, M.T. Biogenesis of Tim proteins of the mitochondrial carrier import pathway: differential targeting mechanisms and crossing over with the main import pathway. Mol. Biol. Cell 10, 2461–2474 (1999).

    Article  CAS  Google Scholar 

  25. Voos, W., Martin, H., Krimmer, T. & Pfanner, N. Mechanisms of protein translocation into mitochondria. Biochim. Biophys. Acta 1422, 235–254 (1999).

    Article  CAS  Google Scholar 

  26. Daum, G., Böhni, P.C. & Schatz, G. Import of proteins into mitochondria: cytochrome b 2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J. Biol. Chem. 257, 13028–13033 (1982).

    CAS  PubMed  Google Scholar 

  27. Martin, H. et al. The yeast mitochondrial intermembrane space: purification and analysis of two distinct fractions. Anal. Biochem. 265, 123–128 (1998).

    Article  CAS  Google Scholar 

  28. Söllner, T., Rassow, J. & Pfanner, N. Analysis of mitochondrial protein import using translocation intermediates and specific antibodies. Methods Cell Biol. 34, 345–358 (1991).

    Article  Google Scholar 

  29. Schägger, H., Cramer, W.A. & von Jagow, G. Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal. Biochem. 217, 220–230 (1994).

    Article  Google Scholar 

  30. Dekker, P.J.T. et al. The Tim core complex defines the number of mitochondrial translocation contact sites and can hold arrested preproteins in the absence of matrix Hsp70–Tim44. EMBO J. 16, 5408–5419 (1997).

    Article  CAS  Google Scholar 

  31. Schägger, H. & von Jagow, G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379 (1987).

    Article  Google Scholar 

  32. Alconada, A., Gärtner, F., Hönlinger, A., Kübrich, M. & Pfanner, N. Mitochondrial receptor complex from Neurospora crassa and Saccharomyces cerevisiae. Methods Enzymol. 260, 263–286 (1995).

    Article  CAS  Google Scholar 

  33. Gambill, B.D. et al. A dual role for mitochondrial heat shock protein 70 in membrane translocation of preproteins. J. Cell. Biol. 123, 109–117 (1993).

    Article  CAS  Google Scholar 

  34. Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Rietveld and J. Tommassen for discussion and H. Müller for expert technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 388 Freiburg, the Fonds der Chemischen Industrie/BMBF and a long-term fellowship (to K.N.T.) from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaus Pfanner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Model, K., Meisinger, C., Prinz, T. et al. Multistep assembly of the protein import channel of the mitochondrial outer membrane. Nat Struct Mol Biol 8, 361–370 (2001). https://doi.org/10.1038/86253

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86253

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing