Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping

Abstract

The crystal structure of human cystatin C, a protein with amyloidogenic properties and a potent inhibitor of cysteine proteases, reveals how the protein refolds to produce very tight two-fold symmetric dimers while retaining the secondary structure of the monomeric form. The dimerization occurs through three-dimensional domain swapping, a mechanism for forming oligomeric proteins. The reconstituted monomer-like domains are similar to chicken cystatin except for one inhibitory loop that unfolds to form the 'open interface' of the dimer. The structure explains the tendency of human cystatin C to dimerize and suggests a mechanism for its aggregation in the brain arteries of elderly people with amyloid angiopathy. A more severe 'conformational disease' is associated with the L68Q mutant of human cystatin C, which causes massive amyloidosis, cerebral hemorrhage and death in young adults. The structure of the three-dimensional domain-swapped dimers shows how the L68Q mutation destabilizes the monomers and makes the partially unfolded intermediate less unstable. Higher aggregates may arise through the three-dimensional domain-swapping mechanism occurring in an open-ended fashion in which partially unfolded molecules are linked into infinite chains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Primary, secondary, tertiary and quaternary structure of HCC.
Figure 2: Schematic illustrations of how HCC oligomers are formed.
Figure 3: Electron density maps.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Grubb, A.O. Adv. Clin. Chem. 35, 63–99 (2000).

    Article  CAS  Google Scholar 

  2. Turk, V. & Bode, W. FEBS Lett. 285, 213–219 (1991).

    Article  CAS  Google Scholar 

  3. Olafsson, I. & Grubb, A. Amyloid Int. J. Exp. Clin. Invest. 7, 70–79 (2000).

    CAS  Google Scholar 

  4. Bode, W. et al. EMBO J. 7, 2593–2599 (1988).

    Article  CAS  Google Scholar 

  5. Dieckmann, T. et al. J. Mol. Biol. 234, 1048–1059 (1993).

    Article  CAS  Google Scholar 

  6. Engh, R.A. et al. J. Mol. Biol. 234, 1060–1069 (1993).

    Article  Google Scholar 

  7. Stubbs, M.T. et al. EMBO J. 9, 1939–1947 (1990).

    Article  CAS  Google Scholar 

  8. Martin, J.R. et al. J. Mol. Biol. 246, 331–343 (1995).

    Article  CAS  Google Scholar 

  9. Chen, J.-M. et al. J. Biol. Chem. 272, 8090–8098 (1997).

    Article  CAS  Google Scholar 

  10. Manoury, B. et al. Nature 369, 695–699 (1998).

    Article  Google Scholar 

  11. Alvarez-Fernandez, M. et al. J. Biol. Chem. 274, 19195–19203 (1999).

    Article  CAS  Google Scholar 

  12. Kozak, M. et al. Acta Crystallogr. D 55, 1939–1942 (1999).

    Article  CAS  Google Scholar 

  13. Abrahamson, M. & Grubb, A. Proc. Natl. Acad. Sci. USA 91, 1416–1420 (1994).

    Article  CAS  Google Scholar 

  14. Bjarnadottir, M. et al. Amyloid Int. J. Exp. Clin. Invest. 8, in the press (2001).

  15. Bennett, M.J., Choe, S. & Eisenberg, D.S. Proc. Natl. Acad. Sci. USA 91, 3127–3131 (1994).

    Article  CAS  Google Scholar 

  16. Schlunegger, M.P., Bennett, M.J. & Eisenberg, D. Adv. Protein Chem. 50, 61–122 (1997).

    Article  CAS  Google Scholar 

  17. Bennett, M.J., Schlunegger, M.P. & Eisenberg, D. Protein Sci. 4, 2455–2468 (1995).

    Article  CAS  Google Scholar 

  18. Ekiel, I. et al. J. Mol. Biol. 271, 266–277 (1997).

    Article  CAS  Google Scholar 

  19. Rawlings, N.D. & Barrett, A.J. J. Mol. Evol. 30, 60–71 (1990).

    Article  CAS  Google Scholar 

  20. Ni, J. et al. J. Biol. Chem. 273, 24797–24804 (1998).

    Article  CAS  Google Scholar 

  21. Gerhartz, B., Ekiel, I. & Abrahamson, M. Biochemistry 37, 17309–17317 (1998).

    Article  CAS  Google Scholar 

  22. Liu, Y., Hart, P.J., Schlunegger, M.P. & Eisenberg, D. Proc. Natl. Acad. Sci. USA 95, 3437–3442 (1998).

    Article  CAS  Google Scholar 

  23. Ekiel, I. & Abrahamson, M. J. Biol. Chem. 271, 1314–1321 (1996).

    Article  CAS  Google Scholar 

  24. Murray, A.J., Head, J.G., Barker, J.J. & Brady, R.L. Nature Struct. Biol. 5, 778–782 (1998).

    Article  CAS  Google Scholar 

  25. Bonar, L., Cohen, A.S. & Skinner, M.M. Proc. Soc. Exp. Biol. Med. 131, 1373–1375 (1969).

    Article  CAS  Google Scholar 

  26. Teplow, D.B. Amyloid Int. J. Exp. Clin. Invest. 5, 121–142 (1998).

    CAS  Google Scholar 

  27. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  28. Kissinger, C.R., Gehlhaar, D.K. & Fogel, D.B. Acta Crystallogr. D 55, 484–491 (1999).

    Article  CAS  Google Scholar 

  29. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  30. Brunger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research of M.J. was supported by an International Research Scholar's award from the Howard Hughes Medical Institute. This research was sponsored by grants from the State Committee for Scientific Research, from the Swedish Medical Research Council, and from the A. Osterlund, A. Pahlsson and J. Kock Foundations. We thank V. Lindström, A.-C. Löfström, B. Gerhartz, and M. Alvarez-Fernandez for assistance with protein expression and purification, G. Bujacz for help with data collection, and Z. Otwinowski for advice on data processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Jaskolski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janowski, R., Kozak, M., Jankowska, E. et al. Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat Struct Mol Biol 8, 316–320 (2001). https://doi.org/10.1038/86188

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing