Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a novel leech carboxypeptidase inhibitor determined free in solution and in complex with human carboxypeptidase A2

Abstract

Leech carboxypeptidase inhibitor (LCI) is a novel protein inhibitor present in the medicinal leech Hirudo medicinalis. The structures of LCI free and bound to carboxypeptidase A2 (CPA2)have been determined by NMR and X-ray crystallography, respectively. The LCI structure defines a new protein motif that comprises a five-stranded antiparallel β-sheet and one short α-helix. This structure is preserved in the complex with human CPA2 in the X-ray structure, where the contact regions between the inhibitor and the protease are defined. The C-terminal tail of LCI becomes rigid upon binding the protease as shown in the NMR relaxation studies, and it interacts with the carboxypeptidase in a substrate-like manner. The homology between the C-terminal tails of LCI and the potato carboxypeptidase inhibitor represents a striking example of convergent evolution dictated by the target protease. These new structures are of biotechnological interest since they could elucidate the control mechanism of metallo-carboxypeptidases and could be used as lead compounds for the search of fibrinolytic drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amino acid sequence of LCI and NMR data used for identifying the secondary structure elements.
Figure 2: Three-dimensional structures of LCI.
Figure 3: Steady-state heteronuclear 1H-15N NOEs for the backbone amides of LCI.
Figure 4: Crystal structure of LCI–CPA2 and comparison between LCI and PCI structures.
Figure 5: Stereo view of the final 1.65 Å 2Fo − Fc electron density map (blue) contoured at 1σ around the ‘primary’ interaction site of LCI (residues suffixed with an i) with the active center of CPA2.
Figure 6: Surface representation of CPA2 in complex with LCI (yellow worm).

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Reverter, D., et al. A carboxypeptidase inhibitor from the medical leech Hirudo medicinalis. Isolation, sequence analysis, cDNA cloning, recombinant expression and characterization. J. Biol. Chem. 273, 32927–32933 (1998).

    Article  CAS  Google Scholar 

  2. Eaton, D.L., Malloy, B.E., Tsai, S.P., Henzel, W. & Drayna, D. Isolation, molecular cloning, and partial characterization of a novel carboxypeptidase B from human plasma. J. Biol. Chem. 266, 21833–21838 (1991).

    CAS  PubMed  Google Scholar 

  3. Reynolds, D.S., et al. Cloning of cDNAs that encode human mast cell carboxypeptidase A, and comparison of the protein with mouse mast cell carboxypeptidase A and rat pancreatic carboxypeptidases. Proc. Natl Acad. Sci. USA 86, 9480–9484 (1989).

    Article  CAS  Google Scholar 

  4. Clore, M., Gronenborn, A.M., Nilges, M. & Ryan, C.A. Three-dimensional structure of potato carboxypeptidase inhibitor in solution. A study using nuclear magnetic resonance, distance geometry, and restrained molecular dynamics. Biochemistry 26, 8012–8023 (1987).

    Article  CAS  Google Scholar 

  5. Rees, D.C. & Lipscomb, W.N. Refined crystal structure of the potato inhibitor complex of carboxypeptidase A at 2.5 Å resolution. J. Mol. Biol. 160, 475–498 (1982).

    Article  CAS  Google Scholar 

  6. Aviles, FX., Vendrell, J., Guasch, A., Coll, M Huber R. Advances in metallo-procarboxypeptidases. Emerging details on the inhibition mechanism and on the activation process. Eur J Biochem. 211, 381–389 (1993).

    Article  CAS  Google Scholar 

  7. Molina, M.A., Marino, C., Oliva, B., Aviles, F.X. & Querol, E. C-tail valine is a key residue for stabilization of complex between potato inhibitor and carboxypeptidase A. J Biol. Chem. 269, 21467–21472 (1994).

    CAS  PubMed  Google Scholar 

  8. Tuszynski, G.P., Gasic, T.B. & Gasic, G.J. Isolation and characterization of antistasin. An inhibitor of metastasis and coagulation. J. Biol. Chem. 262, 9718–9723 (1987).

    CAS  PubMed  Google Scholar 

  9. Rydel, T.J., et al. The structure of a complex of recombinant hirudin and human alpha-thrombin. Science 249, 277–280 (1990).

    Article  CAS  Google Scholar 

  10. Bode, W., Papamokos, E., Musil, D., Seemüller, U. & Fritz, H. Refined 1.2 Å crystal structure of the complex formed between subtilisin Carlsberg and the inhibitor eglin c. Molecular structure of eglin and its detailed interaction with subtilisin. EMBO J. 5, 813–8 (1986).

    Article  CAS  Google Scholar 

  11. Bolognesi, M., et al. X-ray crystal structure of the bovine alpha-chymotrypsin/eglin c complex at 2.6 Å resolution. J Mol. Recognit. 3, 163–168 (1990).

    Article  CAS  Google Scholar 

  12. Mittl, P.R., et al. A new structural class of serine protease inhibitors revealed by the structure of the hirustasin-kallikrein complex. Structure 5, 253–264 (1997).

    Article  CAS  Google Scholar 

  13. Mühlhahn, P., et al. Structure of leech derived tryptase inhibitor (LDTI-C) in solution. FEBS Lett. 355, 290–296 (1994).

    Article  Google Scholar 

  14. Stubbs, M.T., et al. The three-dimensional structure of recombinant leech-derived tryptase inhibitor in complex with trypsin. Implications for the structure of human mast cell tryptase and its inhibition. J. Biol. Chem. 272, 19931–19937 (1997).

    Article  CAS  Google Scholar 

  15. Bajzar, L., Manuel, R. & Nesheim, M.E. Purification and characterization of TAFI, a thrombin-activable fibrinolysis inhibitor. J. Biol. Chem. 270, 14477–14484 (1995).

    Article  CAS  Google Scholar 

  16. Sakharov D.V., Plow, E.F. & Rijken, C. On the mechanism of the antifibrinolytic activity of plasma carboxypeptidase B. J. Biol. Chem. 272, 14477–14482 (1997).

    Article  CAS  Google Scholar 

  17. Huntley, J.F., et al. Distribution of intestinal mast cell proteinase in blood and tissues of normal and Trichinella-infected mice. Parasite Immunol. 12, 85–95 (1990).

    Article  CAS  Google Scholar 

  18. Arizono, N., et al. Lung granulomatous response induced by infection with the intestinal nematode Nippostrongylus brasiliensis is suppressed in mast cell-deficient Ws/Ws rats. Clin. Exp. Immunol. 106, 55–61 (1996).

    Article  CAS  Google Scholar 

  19. García-Sáez, I., Reverter, D., Vendrell, J., Avilés, F.X. & Coll, M. The three-dimensional structure of human procarboxypeptidase A2. Deciphering the basis of its inhibition, activation and intrinsic activity of the zymogen EMBO J., 23, 6906–6913 (1997).

    Article  Google Scholar 

  20. Wüthrich, K. NMR of Proteins & Nucleic Acids (Wiley, New York; 1986).

    Book  Google Scholar 

  21. Farrow N.A. et al. Backbone dynamics of a free and a phosphopeptide-complexed Src homology 2. Study by 15N NMR relaxation. Biochemistry 33, 5984–6003 (1994).

    Article  CAS  Google Scholar 

  22. Coll, M., Guasch, A., Aviles, FX. & Huber, R. Three-dimensional structure of porcine procarboxypeptidase B: a structural basis of its inactivity. EMBO J. 10, 1–9 (1991).

    Article  CAS  Google Scholar 

  23. Teplyakov, AV., et al. Crystal structure of carboxypeptidase T from Thermoactinomyces vulgaris. Eur. J. Biochem. 208, 281–288 (1992).

    Article  CAS  Google Scholar 

  24. Gomis-Rüth, FX., Gomez, M., Bode, W., Huber, R. & Aviles, F.X. The three-dimensional structure of the native ternary complex of bovine pancreatic procarboxypeptidase A with proproteinase E and chymotrypsinogen C. EMBO J. 14, 4387–4394 (1995).

    Article  Google Scholar 

  25. Christianson, D.W. & Lipscomp, W.N. Carboxypeptidase A. Accts Chem. Res. 22, 62–69 (1989).

    Article  CAS  Google Scholar 

  26. Nesheim, M., et al. Thrombin, thrombomodulin and TAFI in the molecular link between coagulation and fibrinolysis. Thromb. Haemost. 78, 386–391 (1997).

    Article  CAS  Google Scholar 

  27. Reverter, D., Ventura, S., Villegas, V., Vendrell, J. & Avilés, F.X. Overexpression of human procarboxypeptidase A2 in Pichia pastoris and detailed characterization of its activation pathway. J. Biol. Chem. 273, 3535–3541 (1998).

    Article  CAS  Google Scholar 

  28. Smith, G.K., et al. Toward antibody-directed enzyme prodrug therapy with the T268G mutant of human carboxypeptidase A1 and novel in vivo stable prodrugs of methotrexate. J. Biol. Chem. 272, 15804–15816 (1997).

    Article  CAS  Google Scholar 

  29. Ernst, R.R., Bodenhausen, G. & Wokaun, A. Principles of NMR in One and Two Dimensions (Clarendon Press, Oxford; 1987).

    Google Scholar 

  30. Rance, M. Improved techniques for homonuclear rotating-frame and isotropic mixing experiments. J. Magn. Reson. 74, 557–564 (1987).

    CAS  Google Scholar 

  31. Jeener, J., Meier, B.H., Bachman, P. & Ernst, R.R. Investigation of exchange processes by two-dimensional NMR spectroscopy. J. Chem. Phys. 71, 4546–4553 (1979).

    Article  CAS  Google Scholar 

  32. Bax, A. Davis, D.G. MLEV-17-Based two-dimensional homonuclear magnetization transfer spectroscopy. J. Magn. Reson. 65, 355–360 (1985).

    CAS  Google Scholar 

  33. Dhalluin, C., Wieruszeki, J.M. & Lippens, G. An improved homonuclear TOCSY experiment with minimal water saturation. J. Magn. Reson. III 168–170 (1996).

    Article  Google Scholar 

  34. Holak, T.A., Gondol, D., Otlewski, J. & Wilusz, T. Determination of the complete 3-dimensional structure of the trypsin-inhibitor from squash seeds in aqueous-solution by nuclear magnetic-resonance and a combination of distance geometry and dynamical simulated annealing. J. Mol. Biol. 210, 635–648 (1989).

    Article  CAS  Google Scholar 

  35. Kim, Y. & Prestegard, J.H. Measurement of vicinal couplings from cross peaks in COSY spectra. J. Magn. Reson. 84, 9–13 (1989).

    CAS  Google Scholar 

  36. Hyberts, S.G., Mäki, W. & Wagner, G. Stereospecific assignments of side-chain protons and characterization of torsion angles in Eglin C. Eur. J. Biochem. 164, 625–635 (1987).

    Article  CAS  Google Scholar 

  37. Brünger, A.T., XPLOR: a System for X-ray Crystallography and NMR (Yale University, New Haven, CT; 1993).

    Google Scholar 

  38. Jancarik, J. & Kim, S.H. Sparse matrix sample: a screening method for crystallization of proteins. J. Appl. Crystallogr. 24, 409–411 (1991).

    Article  CAS  Google Scholar 

  39. Otwinowski, Z. & Minor, W. DENZO: A film processing for macromolecular crystallography. (Yale University, New Haven, Connecticut; 1993).

    Google Scholar 

  40. Navaza, J. AmoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  41. Collaborative Computational Project, Number 4. CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  42. Roussell, A & Cambilleau, C. TURBO-FRODO in Silicon Graphics Geometry (Silicon Graphics, Mountain View, California; 1991).

    Google Scholar 

  43. Nicholls, A., Sharp, K., & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D. Reverter is a recipient of a fellowship from the European Community Biotechnology Marie Curie program. Thanks to John Richardson for helpful discussions. This work was supported by the Deutsche Forschungsgemeinschaft, the Ministerio de Educación y Cultura (Spain), by the Centre de Referència en Biotecnologia (Generalitat de Catalunya) and by the E.C. Biotechnology Programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tad A. Holak or Francesc X. Avilés.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reverter, D., Fernández-Catalán, C., Baumgartner, R. et al. Structure of a novel leech carboxypeptidase inhibitor determined free in solution and in complex with human carboxypeptidase A2. Nat Struct Mol Biol 7, 322–328 (2000). https://doi.org/10.1038/74092

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74092

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing