Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rational design of potent human transthyretin amyloid disease inhibitors

A Correction to this article was published on 01 May 2000

Abstract

The human amyloid disorders, familial amyloid polyneuropathy, familial amyloid cardiomyopathy and senile systemic amyloidosis, are caused by insoluble transthyretin (TTR) fibrils, which deposit in the peripheral nerves and heart tissue. Several nonsteroidal anti-inflammatory drugs and structurally similar compounds have been found to strongly inhibit the formation of TTR amyloid fibrils in vitro. These include flufenamic acid, diclofenac, flurbiprofen, and resveratrol. Crystal structures of the protein–drug complexes have been determined to allow detailed analyses of the protein–drug interactions that stabilize the native tetrameric conformation of TTR and inhibit the formation of amyloidogenic TTR. Using a structure-based drug design approach ortho-trifluormethylphenyl anthranilic acid and N-(meta-trifluoromethylphenyl) phenoxazine 4,6-dicarboxylic acid have been discovered to be very potent and specific TTR fibril formation inhibitors. This research provides a rationale for a chemotherapeutic approach for the treatment of TTR-associated amyloid diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The hormone binding channel of TTR.
Figure 2: Structures of thyroxine (T4), the natural ligand of TTR, the NSAIDs tested as fibril formation inhibitors (1–9), and designed TTR fibril formation inhibitors (10–12).
Figure 3: Hormone binding site structure of the TTR–RESV complex.
Figure 4: Structure of the TTR–DIC complex.
Figure 5: Comparison of binding of flurbiprofen to TTR and COX-2.
Figure 6: Hormone binding channel of TTR with bound novel designed amyloid inhibitors.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Benson, M. D., Wallace, M. R. “Amyloidosis” In The Metabolic Basis of Inherited Disease (Scrirer, C. R., Beaudet, A. Z., Sly, W. S., Velk, D. eds, New York: McGraw Hill. 2439–2460, 1989).

    Google Scholar 

  2. Colon, W. & Kelly, J.W. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 31, 8654–8660 (1992).

    Article  CAS  Google Scholar 

  3. Kelly, J.W. Alternative conformations of amyloidogenic proteins govern their behavior. Curr. Opin. Struct. Biol. 6, 11–17 (1996).

    Article  CAS  Google Scholar 

  4. Lai, Z., Colon, W. & Kelly, J.W. The acid-mediated denaturation pathway of transthyretin yields a conformational intermediate which can self-assemble into amyloid. Biochemistry 35, 6470–6482 (1996).

    Article  CAS  Google Scholar 

  5. Kelly, J. W. The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr. Opin. Struct. Biol. 8, 101–106 (1998).

    Article  CAS  Google Scholar 

  6. McCutchen, S.L., Lai, Z., Miroy, G.J., Kelly, J.W. & Colon, W. Comparison of lethal and nonlethal transthyretin variants and their relationship to amyloid disease. Biochemistry 34, 13527–36 (1995).

    Article  CAS  Google Scholar 

  7. Jacobson, D.R. & Buxbaum, J.N. Genetic aspects of amyloidosis. Adv. Human Genetics 20, 69–123 (1991).

    Article  CAS  Google Scholar 

  8. Sipe, J.D. Amyloidosis. Crit. Rev. Clin. Lab. Sci. 31, 325–354 (1994).

    Article  CAS  Google Scholar 

  9. Benson, M.D., Uemichi, T. Transthyretin amyloidosis. Amyloid Int. J. Exp. Clin. Invest. 3, 44–56 (1996).

    CAS  Google Scholar 

  10. Pomerance A. Age-related cardiovascular changes and mechanically induced endocardial pathology. In: Silver MD, ed. Cardiovascular pathology (ed. Silver M.D. 2nd ed. New York: Churchill Livingstone. 155–162, 1991).

    Google Scholar 

  11. Hodkinson, H.M., Pomerance, A. The clinical significance of senile cardiac amyloidosis: a prospective clinico-pathological study. Q. J. Med. 46, 381–387 (1977).

    CAS  PubMed  Google Scholar 

  12. Jacobson, D.R. et al. Variant-sequence transthyretin (isoleucin 122) in late-onset cardiac amyloidosis in black americans. N. Engl. J. Med. 336, 466–473 (1997).

    Article  CAS  Google Scholar 

  13. Monaco, H.L., Rizzi, M. & Coda, A. Structure of a complex of two plasma proteins: transthyretin and retinol-binding protein Science 268, 1039–1041 (1995).

    Article  CAS  Google Scholar 

  14. Nilsson, S. F., Rack, L., Peterson, P. Studies of thyroid hormone binding proteins. J. Biol. Chem. 250, 8554–8563 (1975).

    CAS  PubMed  Google Scholar 

  15. Blake, C.C., Geisow, M.J., Oatley, S.J., Rerat B. & Rerat, C. Structure of prealbumin: secondary, tertiary and quaternary interactions determined by Fourier refinement at 1.8 Å. J. Mol. Biol. 121, 339–356 (1978).

    Article  CAS  Google Scholar 

  16. Blake, C.C.F, Geisow, M.J., Swan, I.D., Rerat, C. & Rerat, B. Structure of human plasma prealbumin at 2.5 Å resolution. A preliminary report on the polypeptide chain conformation, quaternary structure and thyroxine binding. J. Mol. Biol. 88, 1–12 (1974).

    Article  CAS  Google Scholar 

  17. Miroy, G.J. et al. Inhibiting transthyretin amyloid fibril formation via protein stabilization. Proc. Natl. Acad. Sci. USA 93, 15051–15056 (1996).

    Article  CAS  Google Scholar 

  18. Wojtczak, A., Cody, V., Luft J.R. & Pangborn W. Structures of human transthyretin complexed with thyroxine at 2.0 Å Resolution and 3′-5′-Dinitro-N-acetyl-L-thyroxine at 2.2 Å Resolution. Acta Crystallogr. D 52, 758–765 (1996).

    Article  CAS  Google Scholar 

  19. Peterson, S.A. et al. Inhibiting transthyretin conformational changes that lead to amyloid fibril formation. Proc. Natl. Acad. Sci. USA 95, 12956–12960 (1998).

    Article  CAS  Google Scholar 

  20. Coelho, T. Familial amyloid polyneuropathy: new developments in genetics and treatment. Curr. Opin. Neurol. 9, 355–359 (1996).

    Article  CAS  Google Scholar 

  21. Munro, S.L. et al. Drug Competition for thyroxine binding to transthyretin (prealbumin): comparison with effects on thyroxine-binding globulin. J. Clin. Endorinol. Metab. 68, 1141–7 (1989).

    Article  CAS  Google Scholar 

  22. Baures, P.W., Peterson, S.A., Kelly, J.W. Discovering transthyretin amyloid fibril inhibitors by limited screening. Bioorg. Med. Chem. 6, 1389–1401 (1998).

    Article  CAS  Google Scholar 

  23. Baures, P.W., Oza, V.B., Peterson, S.A. & Kelly, J.W. Synthesis and evaluation of inhibitors of transthyretin amyloid formation based on the non-steroidal anti-inflammatory drug, flufenamic acid. Bioorg. Med. Chem. 7, 1339–1347 (1999).

    Article  CAS  Google Scholar 

  24. Demrow, H.S, Slane, P.R., Folts, J.D. Administration of wine and grape juice inhibits in vivo platelet activity and thrombosis in stenosed canine coronary arteries. Circulation 91, 1182–88 (1995)

    Article  CAS  Google Scholar 

  25. Bertelli A.A., et al. Antiplatelet activity of synthetic and natural resveratrol in red wine. Int. J. Tissue React. 17, 1–3 (1995).

    CAS  PubMed  Google Scholar 

  26. MacCarrone M., Lorenzon T., Guerrieri P. & Agro A.F., Resveratrol prevents apoptosis in K562 cells by inhibiting lipoxygenase and cyclooxygenase activity. Eur. J. Biochem. 265, 27–34 (1999).

    Article  CAS  Google Scholar 

  27. Cryer, B. & Feldman, M. Cyclooxygenase-1 and cyclooxygenase-2 selectivity of widely used nonsteroidal anti-inflammatory drugs. Am J. Med. 104, 413–421 (1998).

    Article  CAS  Google Scholar 

  28. Kurumbail R.G. et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 384, 644–648 (1996).

    Article  CAS  Google Scholar 

  29. Oza, V.B., Petrassi, H.M., Purkey, H.E. & Kelly, J.W. Synthesis and evaluation of anthranilic acid-based transthyretin amyloid fibril inhibitors. Bioorg. Med. Chem. Lett 9, 1–6 (1999).

    Article  CAS  Google Scholar 

  30. Horodniak, J.W. et al. Inhibition of prostaglandin synthetase and carrageenan-induced edema by analogs of flufenamic acid. Drugs Exptl. Clin. Res. 2, 35–45 (1977).

    CAS  Google Scholar 

  31. Petrassi, H. M., Klabunde, T., Sacchettini, J., Kelly, J. W. Structure-based design of N-phenyl phenoxazine transthyretin amyloid fibril inhibitors. J. Am. Chem. Soc. 122, in the press (2000).

  32. Crook P.R., Willis, J.V., Kendall, M.J., Jack, D.B. & Fowler, P.D. The pharmacokinetics of diclofenac sodium in patients with active rheumatoid disease. Eur. J. Clin. Pharmacol. 21, 331–334 (1982).

    Article  CAS  Google Scholar 

  33. Diaz, H., Espina, J. R., Kelly, J. W. A dibenzofuran-based amino acid designed to nucleate antiparrallel β-sheet structure: evidence for intramolecular hydrogen-bond formation. J. Am. Chem. Soc. Am 114, 8316–8318 (1992).

    Article  CAS  Google Scholar 

  34. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data in oscillation mode. Methods Enz. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  35. Brünger, A.T. Crystallography & NMR System. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  36. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved method for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  37. Evans, S. V. SETOR: Hardware lighted three-dimensional solid model representations of macromolecules. J. Mol. Graphics 11, 134–138 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by NIH grants (JCS and JWK), the Welch foundation and the Skaggs Institute for Chemical Biology. T.K. thanks the Deutsche Forschungsgemeinschaft for a postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Sacchettini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klabunde, T., Petrassi, H., Oza, V. et al. Rational design of potent human transthyretin amyloid disease inhibitors. Nat Struct Mol Biol 7, 312–321 (2000). https://doi.org/10.1038/74082

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74082

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing