Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural insights into substrate binding by the molecular chaperone DnaK

Abstract

How substrate affinity is modulated by nucleotide binding remains a fundamental, unanswered question in the study of 70 kDa heat shock protein (Hsp70) molecular chaperones. We find here that the Escherichia coli Hsp70, DnaK, lacking the entire α-helical domain, DnaK(1–507), retains the ability to support λ phage replication in vivo and to pass information from the nucleotide binding domain to the substrate binding domain, and vice versa, in vitro. We determined the NMR solution structure of the corresponding substrate binding domain, DnaK(393–507), without substrate, and assessed the impact of substrate binding. Without bound substrate, loop L3,4 and strand β3 are in significantly different conformations than observed in previous structures of the bound DnaK substrate binding domain, leading to occlusion of the substrate binding site. Upon substrate binding, the β-domain shifts towards the structure seen in earlier X-ray and NMR structures. Taken together, our results suggest that conformational changes in the β-domain itself contribute to the mechanism by which nucleotide binding modulates substrate binding affinity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro studies of DnaK(1–507) allosteric function.
Figure 2: The structure of the apo β-domain and comparison with other peptide-bound forms.
Figure 3: Backbone conformation flexibility in the apo β-domain.
Figure 4: NMR titration of DnaK(393–507) with the peptide NRLLLTG.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Bukau, B. & Horwich, A.L. Cell 92, 351–366 (1998).

    Article  CAS  Google Scholar 

  2. Flaherty, K.M., DeLuca-Flaherty, C. & McKay, D.B. Nature 346, 623– 628 (1990).

    Article  CAS  Google Scholar 

  3. Zhu, X. et al. Science 272, 1606–1614 (1996).

    Article  CAS  Google Scholar 

  4. Wang, H. et al. Biochemistry 37, 7929–7940 (1998).

    Article  CAS  Google Scholar 

  5. Morshauser, R.C. et al. J. Mol. Biol. 289, 1387– 1403 (1999).

    Article  CAS  Google Scholar 

  6. Bertelsen, E.B., Zhou, H., Lowry, D.F., Flynn, G.C. & Dahlquist, F.W. Protein Sci. 8, 343– 354 (1999).

    Article  CAS  Google Scholar 

  7. McCarty, J.S., Buchberger, A, Reinstein, J. & Bukau, B. J. Mol. Biol. 249, 126–137 (1995).

    Article  CAS  Google Scholar 

  8. Misselwitz, B., Staeck, O. & Rapoport, T.A. Mol. Cell. 2, 593– 603 (1998).

    Article  CAS  Google Scholar 

  9. Montgomery, D.L., Morimoto, R.I. & Gierasch, L.M. J. Mol. Biol. 286, 915– 932 (1999).

    Article  CAS  Google Scholar 

  10. Yochem, J. et al. Mol. Gen. Genet. 164, 9– 14 (1978).

    Article  CAS  Google Scholar 

  11. Bukau, B. & Walker, G.C. EMBO J. 9, 4027–4036 (1990).

    Article  CAS  Google Scholar 

  12. Pierpaoli, E.V., Gisler, S.M. & Christen, P. Biochemistry 37, 16741– 16748 (1998).

    Article  CAS  Google Scholar 

  13. Rüdiger, S., Buchberger, A. & Bukau, B. Nature Struct. Biol. 4, 342– 349 (1997).

    Article  Google Scholar 

  14. Montgomery, D.L., Jordan, R., McMacken, R. & Freire, E. J. Mol. Biol. 232, 680–692 (1993).

    Article  CAS  Google Scholar 

  15. Gragerov, A., Zeng, L., Zhao, X., Burkholder, W. & Gottesman, M.E. J. Mol. Biol. 235, 848– 854 (1994).

    Article  CAS  Google Scholar 

  16. Buchberger, A. et al. J. Biol. Chem. 270, 16903– 16910 (1995).

    Article  CAS  Google Scholar 

  17. Laufen, T. et al. Proc. Natl. Acad. Sci. USA 96, 5452 –5457 (1999).

    Article  CAS  Google Scholar 

  18. Flynn, G.C., Pohl, J., Flocco, M.T. & Rothman, J.E. Nature 353, 726–730 (1991).

    Article  CAS  Google Scholar 

  19. Rost, B. & Sander, C. J. Mol. Biol. 232, 584–599 (1993).

    Article  CAS  Google Scholar 

  20. Burkholder, W.F. et al. Proc. Natl. Acad. Sci. USA 93, 10632 –10637 (1996).

    Article  CAS  Google Scholar 

  21. Voisine, C. et al. Cell 97, 565–574 (1999).

    Article  CAS  Google Scholar 

  22. Cavanagh, J., Fairbrother, W.J. & Palmer, A.G.III, Skelton, N.J. Protein NMR spectroscopy (Academic Press, San Diego, 1996).

  23. Neri, D., Szyperski, T., Otting, G., Senn, H. & Wüthrich, K. Biochemistry 28 , 7510–7516 (1989).

    Article  CAS  Google Scholar 

  24. Güntert, P., Dötsch, V., Wider, G. & Wüthrich, K. J. Biomol. NMR 2, 619–629 (1992).

    Article  Google Scholar 

  25. Bartels, C., Xia, T., Billeter, M., Güntert, P. & Wüthrich, K. J. Biomol. NMR 6, 1–10 (1995).

    Article  CAS  Google Scholar 

  26. Güntert, P., Mumenthaler, C. & Wüthrich, K. J. Mol. Biol. 273, 283– 298 (1997).

    Article  Google Scholar 

  27. Schaumann, T., Braun, W. & Wüthrich, K. Biopolymers 29, 679– 694 (1990).

    Article  CAS  Google Scholar 

  28. Koradi, R., Billeter, M. & Wüthrich, K. J. Mol. Graphics 14, 52– 55 (1996).

    Article  Google Scholar 

  29. Carrington, A. & McLachlan, A. Introduction to magnetic resonance with applications to chemistry and chemical physics . (Harper & Row, New York, 1967).

    Google Scholar 

  30. Laskowski, R.A., Rullmann, J.A.C., MacArthur, M.W., Kaptein, R. & Thornton, J.M. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants to E.R.P.Z and to L.M.G., and a NIH fellowship to D.L.M.. The W.M. Keck Foundation, NIH, NSF and Parke-Davis/ Warner Lambert are gratefully acknowledged for financial support towards the 800 MHz NMR instrument. We thank J. Feltham for critical reading of the manuscript, and R. Sivendran for help with the assays of peptide-stimulated ATPase activity.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lila M. Gierasch or Erik R.P. Zuiderweg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellecchia, M., Montgomery, D., Stevens, S. et al. Structural insights into substrate binding by the molecular chaperone DnaK. Nat Struct Mol Biol 7, 298–303 (2000). https://doi.org/10.1038/74062

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74062

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing