Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Crosstalk between the catalytic and regulatory domains allows bidirectional regulation of Src


The catalytic activity of Src family tyrosine kinases is inhibited by intramolecular interactions between the regulatory SH3 and SH2 domains and the catalytic domain. In the inactive state, the critical αC-helix in the catalytic domain is positioned such that the formation of the Glu 310–Lys 295 salt bridge is precluded, Tyr 416 in the activation loop is unphosphorylated, and the SH2 and SH3 domains are unavailable for interactions with other proteins. We found that phosphorylation of the activation loop or mutation of the loop preceding the αC-helix activates Src and increases the accessibility of the SH3 domain for ligands. Interaction of the αC-helix with the activation loop is a central component of this regulatory system. Our data suggest a bidirectional regulation mechanism in which the regulatory domains inhibit Src activity, and Src activity controls the availability of the regulatory domains. By this mechanism, Src family kinases can be activated by proteins phosphorylating or changing the conformation of the catalytic domain. Once active, Src family kinases become less prone to regulation, implying a positive feedback loop on their activity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structure of Src. General view of the topology of Tyr 527-phosphorylated, regulated, human c-Src lacking the unique domain15.
Figure 2: Activity of Src mutants in mammalian cells. a, Phosphotyrosine levels of cellular proteins after transient transfection of various Src alleles in HEK293 cells
Figure 3: Regulation of Src/Lck chimeras
Figure 4: Role of Tyr 416
Figure 5: Residues participating in the αC-helix/activation loop communication.


  1. 1

    Brown, M.T. & Cooper, J.A. Biochim. Biophys. Acta 1287, 121–149 (1996).

    Google Scholar 

  2. 2

    Thomas, S.M. & Brugge, J.S. Annu. Rev. Cell. Dev. Biol. 13, 513–609 (1997).

    CAS  Article  Google Scholar 

  3. 3

    Hubbard, S.R. Nature Struct. Biol. 6, 711–714 (1999).

    CAS  Article  Google Scholar 

  4. 4

    Erpel, T. & Courtneidge, S.A. Curr. Biology 7, 176–182 (1995).

    CAS  Article  Google Scholar 

  5. 5

    Kaplan, K.B. et al. EMBO J. 13, 4745–4756 (1994).

    CAS  Article  Google Scholar 

  6. 6

    Schwartzberg, P.L. et al. Genes Dev. 11, 2835–2844 (1997).

    CAS  Article  Google Scholar 

  7. 7

    Kaplan, K.B., Swedlow, J.R., Morgan, D.O. & Varmus, H.E. Genes Dev. 9, 1505–1517 (1995).

    CAS  Article  Google Scholar 

  8. 8

    Fincham, V.J. & Frame, M.C. EMBO J. 17, 81–92 (1998).

    CAS  Article  Google Scholar 

  9. 9

    Felsenfeld, D.P., Schwartzberg, P.L., Venegas, A., Tse, R. & Sheetz, M.P. Nature Cell. Biol. 1, 200–206 (1999).

    CAS  Article  Google Scholar 

  10. 10

    Sicheri, F. & Kuriyan, J. Curr. Opin. Struct. Biol. 7, 777–785 (1997).

    CAS  Article  Google Scholar 

  11. 11

    Williams, J.C., Wierenga, R.K. & Saraste, M. Trends Biochem Sci 23, 179–184 (1998).

    CAS  Article  Google Scholar 

  12. 12

    Xu, W., Harrison, S.C. & Eck, M.J. Nature 385, 595–602 (1997).

    CAS  Article  Google Scholar 

  13. 13

    Sicheri, F., Moarefi, I. & Kuriyan, J. Nature 385, 602–609 (1997).

    CAS  Article  Google Scholar 

  14. 14

    Williams, J.C. et al. J. Mol. Biol. 274, 757–775 (1997).

    CAS  Article  Google Scholar 

  15. 15

    Xu, W., Doshi, A., Lei, M., Eck, M.J. & Harrison, S.C. Mol.Cell 3, 629–638 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Schindler, T. et al. Mol. Cell 3, 639–648 (1999).

    CAS  Article  Google Scholar 

  17. 17

    Erpel, T., Superti-Furga, G. & Courtneidge, S.A. EMBO J. 14, 963–975 (1995).

    CAS  Article  Google Scholar 

  18. 18

    Gonfloni, S. et al. EMBO J. 16, 7261–7271 (1997).

    CAS  Article  Google Scholar 

  19. 19

    Gonfloni, S., Frischknecht, F., Way, M. & Superti-Furga, G. Nature Struct. Biol. 6, 760–764 (1999).

    CAS  Article  Google Scholar 

  20. 20

    Wright, D.D., Sefton, B.M. & Kamps, M.P. Mol. Cell Biol. 14, 2429–2437 (1994).

    CAS  Article  Google Scholar 

  21. 21

    Moarefi, I. et al. Nature 385, 650–653 (1997).

    CAS  Article  Google Scholar 

  22. 22

    Briggs, S.D., Sharkey, M., Stevenson, M. & Smithgall, T.E. J. Biol. Chem. 272, 17899–17902 (1997).

    CAS  Article  Google Scholar 

  23. 23

    Hartley, D.A. et al. J. Biol. Chem. 274, 20056–20059 (1999).

    CAS  Article  Google Scholar 

  24. 24

    LaFevre-Bernt, M. et al. J. Biol. Chem. 273, 32129–32134 (1998).

    CAS  Article  Google Scholar 

  25. 25

    Weijland, A. et al. Proc. Natl. Acad. Sci. USA 94, 3590–3595 (1997).

    CAS  Article  Google Scholar 

  26. 26

    Koegl, M., Courtneidge, S.A. & Superti-Furga, G. Oncogene 11, 2317–2329 (1995).

    CAS  PubMed  Google Scholar 

  27. 27

    Iba, H., Takeya, T., Cross, F.R., Hanafusa, T. & Hanafusa, H. Proc. Natl. Acad. Sci. USA 81, 4424–4428 (1984).

    CAS  Article  Google Scholar 

  28. 28

    Levy, J.B., Iba, H. & Hanafusa, H. Proc. Natl. Acad. Sci. USA 83, 4228–4232 (1986).

    CAS  Article  Google Scholar 

  29. 29

    Ferracini, R. & Brugge, J. Oncogene Res. 5, 205–219 (1990).

    CAS  PubMed  Google Scholar 

  30. 30

    Sudol, M. et al. Nucl. Acids Res. 16, 9876 (1988).

  31. 31

    Sun, G., Sharma, A.K. & Budde, R.J. Oncogene 17, 1587–1595 (1998).

    CAS  Article  Google Scholar 

  32. 32

    Hardwick, J.S. & Sefton, B.M. J. Biol. Chem. 272, 25429–25432 (1997).

    CAS  Article  Google Scholar 

  33. 33

    Superti-Furga, G., Fumagalli, S., Koegl, M., Courtneidge, S.A. & Draetta, G. EMBO J. 12, 2625–2634 (1993).

    CAS  Article  Google Scholar 

  34. 34

    Kypta, R.M., Goldberg, Y., Ulug, E.T. & Courtneidge, S.A. Cell 62, 481–492 (1990).

    CAS  Article  Google Scholar 

  35. 35

    Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281–296 (1991).

    CAS  Article  Google Scholar 

Download references


We wish to thank R. Wierenga for support, H. Pluk for the HA-paxillin construct, M.J. Eck for the human Src coordinates, T. Erpel and S.A. Courtneidge for the original SH3 domain swap and suggestions, A. Nelsbach for the anti-phospho-Y416 antibodies, J.R. Engen for help with the figures, A. Nebreda, R. Klein, M. Way and members of the Superti-Furga laboratory for suggestions and critical reading of the manuscript. S.G. was supported by a fellowship from the EC, the EMBL and the Boncompagni-Ludovisi Foundation. A.W. was supported by an EC fellowship.

Author information



Corresponding author

Correspondence to Giulio Superti-Furga.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gonfloni, S., Weijland, A., Kretzschmar, J. et al. Crosstalk between the catalytic and regulatory domains allows bidirectional regulation of Src. Nat Struct Mol Biol 7, 281–286 (2000).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing