Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crosstalk between the catalytic and regulatory domains allows bidirectional regulation of Src

Abstract

The catalytic activity of Src family tyrosine kinases is inhibited by intramolecular interactions between the regulatory SH3 and SH2 domains and the catalytic domain. In the inactive state, the critical αC-helix in the catalytic domain is positioned such that the formation of the Glu 310–Lys 295 salt bridge is precluded, Tyr 416 in the activation loop is unphosphorylated, and the SH2 and SH3 domains are unavailable for interactions with other proteins. We found that phosphorylation of the activation loop or mutation of the loop preceding the αC-helix activates Src and increases the accessibility of the SH3 domain for ligands. Interaction of the αC-helix with the activation loop is a central component of this regulatory system. Our data suggest a bidirectional regulation mechanism in which the regulatory domains inhibit Src activity, and Src activity controls the availability of the regulatory domains. By this mechanism, Src family kinases can be activated by proteins phosphorylating or changing the conformation of the catalytic domain. Once active, Src family kinases become less prone to regulation, implying a positive feedback loop on their activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of Src. General view of the topology of Tyr 527-phosphorylated, regulated, human c-Src lacking the unique domain15.
Figure 2: Activity of Src mutants in mammalian cells. a, Phosphotyrosine levels of cellular proteins after transient transfection of various Src alleles in HEK293 cells
Figure 3: Regulation of Src/Lck chimeras
Figure 4: Role of Tyr 416
Figure 5: Residues participating in the αC-helix/activation loop communication.

Similar content being viewed by others

References

  1. Brown, M.T. & Cooper, J.A. Biochim. Biophys. Acta 1287, 121–149 (1996).

    Google Scholar 

  2. Thomas, S.M. & Brugge, J.S. Annu. Rev. Cell. Dev. Biol. 13, 513–609 (1997).

    Article  CAS  Google Scholar 

  3. Hubbard, S.R. Nature Struct. Biol. 6, 711–714 (1999).

    Article  CAS  Google Scholar 

  4. Erpel, T. & Courtneidge, S.A. Curr. Biology 7, 176–182 (1995).

    Article  CAS  Google Scholar 

  5. Kaplan, K.B. et al. EMBO J. 13, 4745–4756 (1994).

    Article  CAS  Google Scholar 

  6. Schwartzberg, P.L. et al. Genes Dev. 11, 2835–2844 (1997).

    Article  CAS  Google Scholar 

  7. Kaplan, K.B., Swedlow, J.R., Morgan, D.O. & Varmus, H.E. Genes Dev. 9, 1505–1517 (1995).

    Article  CAS  Google Scholar 

  8. Fincham, V.J. & Frame, M.C. EMBO J. 17, 81–92 (1998).

    Article  CAS  Google Scholar 

  9. Felsenfeld, D.P., Schwartzberg, P.L., Venegas, A., Tse, R. & Sheetz, M.P. Nature Cell. Biol. 1, 200–206 (1999).

    Article  CAS  Google Scholar 

  10. Sicheri, F. & Kuriyan, J. Curr. Opin. Struct. Biol. 7, 777–785 (1997).

    Article  CAS  Google Scholar 

  11. Williams, J.C., Wierenga, R.K. & Saraste, M. Trends Biochem Sci 23, 179–184 (1998).

    Article  CAS  Google Scholar 

  12. Xu, W., Harrison, S.C. & Eck, M.J. Nature 385, 595–602 (1997).

    Article  CAS  Google Scholar 

  13. Sicheri, F., Moarefi, I. & Kuriyan, J. Nature 385, 602–609 (1997).

    Article  CAS  Google Scholar 

  14. Williams, J.C. et al. J. Mol. Biol. 274, 757–775 (1997).

    Article  CAS  Google Scholar 

  15. Xu, W., Doshi, A., Lei, M., Eck, M.J. & Harrison, S.C. Mol.Cell 3, 629–638 (1999).

    Article  CAS  Google Scholar 

  16. Schindler, T. et al. Mol. Cell 3, 639–648 (1999).

    Article  CAS  Google Scholar 

  17. Erpel, T., Superti-Furga, G. & Courtneidge, S.A. EMBO J. 14, 963–975 (1995).

    Article  CAS  Google Scholar 

  18. Gonfloni, S. et al. EMBO J. 16, 7261–7271 (1997).

    Article  CAS  Google Scholar 

  19. Gonfloni, S., Frischknecht, F., Way, M. & Superti-Furga, G. Nature Struct. Biol. 6, 760–764 (1999).

    Article  CAS  Google Scholar 

  20. Wright, D.D., Sefton, B.M. & Kamps, M.P. Mol. Cell Biol. 14, 2429–2437 (1994).

    Article  CAS  Google Scholar 

  21. Moarefi, I. et al. Nature 385, 650–653 (1997).

    Article  CAS  Google Scholar 

  22. Briggs, S.D., Sharkey, M., Stevenson, M. & Smithgall, T.E. J. Biol. Chem. 272, 17899–17902 (1997).

    Article  CAS  Google Scholar 

  23. Hartley, D.A. et al. J. Biol. Chem. 274, 20056–20059 (1999).

    Article  CAS  Google Scholar 

  24. LaFevre-Bernt, M. et al. J. Biol. Chem. 273, 32129–32134 (1998).

    Article  CAS  Google Scholar 

  25. Weijland, A. et al. Proc. Natl. Acad. Sci. USA 94, 3590–3595 (1997).

    Article  CAS  Google Scholar 

  26. Koegl, M., Courtneidge, S.A. & Superti-Furga, G. Oncogene 11, 2317–2329 (1995).

    CAS  PubMed  Google Scholar 

  27. Iba, H., Takeya, T., Cross, F.R., Hanafusa, T. & Hanafusa, H. Proc. Natl. Acad. Sci. USA 81, 4424–4428 (1984).

    Article  CAS  Google Scholar 

  28. Levy, J.B., Iba, H. & Hanafusa, H. Proc. Natl. Acad. Sci. USA 83, 4228–4232 (1986).

    Article  CAS  Google Scholar 

  29. Ferracini, R. & Brugge, J. Oncogene Res. 5, 205–219 (1990).

    CAS  PubMed  Google Scholar 

  30. Sudol, M. et al. Nucl. Acids Res. 16, 9876 (1988).

  31. Sun, G., Sharma, A.K. & Budde, R.J. Oncogene 17, 1587–1595 (1998).

    Article  CAS  Google Scholar 

  32. Hardwick, J.S. & Sefton, B.M. J. Biol. Chem. 272, 25429–25432 (1997).

    Article  CAS  Google Scholar 

  33. Superti-Furga, G., Fumagalli, S., Koegl, M., Courtneidge, S.A. & Draetta, G. EMBO J. 12, 2625–2634 (1993).

    Article  CAS  Google Scholar 

  34. Kypta, R.M., Goldberg, Y., Ulug, E.T. & Courtneidge, S.A. Cell 62, 481–492 (1990).

    Article  CAS  Google Scholar 

  35. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank R. Wierenga for support, H. Pluk for the HA-paxillin construct, M.J. Eck for the human Src coordinates, T. Erpel and S.A. Courtneidge for the original SH3 domain swap and suggestions, A. Nelsbach for the anti-phospho-Y416 antibodies, J.R. Engen for help with the figures, A. Nebreda, R. Klein, M. Way and members of the Superti-Furga laboratory for suggestions and critical reading of the manuscript. S.G. was supported by a fellowship from the EC, the EMBL and the Boncompagni-Ludovisi Foundation. A.W. was supported by an EC fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Superti-Furga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonfloni, S., Weijland, A., Kretzschmar, J. et al. Crosstalk between the catalytic and regulatory domains allows bidirectional regulation of Src. Nat Struct Mol Biol 7, 281–286 (2000). https://doi.org/10.1038/74041

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74041

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing