Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A metastable state in folding simulations of a protein model

Abstract

The native state of a protein is generally believed to be the global free energy minimum. However, there is increasing evidence that kinetically selected states play a role in the biological function of some proteins. In a recent folding study of a 125-residue heteropolymer model, one of 200 sequences was found to fold repeatedly to a particular local minimum that did not interconvert to the global minimum. The kinetic preference for this ‘metastable’ state is shown to derive from an entropic barrier associated with inserting a tail segment into the protein interior of the serpin-like global minimum structure. The relation of the present results to the role of metastable states in functioning and pathogenic proteins is discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Anfinsen, C.B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    CAS  Google Scholar 

  2. Richards, F.M. On the enzymic activity of subtilisin-modified ribonuclease. Proc. Natl. Acad. Sci. USA 44, 162–166 (1958).

    Article  CAS  Google Scholar 

  3. Taniuchi, H., Anfinsen, C.B. & Sodja, A., Nuclease-T: An active derivative of staphylococcal nuclease composed of two noncovalently bonded peptide fragments. Proc. Natl. Acad. Sci. USA 58, 1235–1242 (1967).

    Article  CAS  Google Scholar 

  4. Taniuchi, H. & Anfinsen, C.B. Simultaneous formation of two alternative enzymically active structures by complementation of two overlapping fragments of staphylococcal nuclease. J. Biol. Chem. 246, 2291–2301 (1971).

    CAS  PubMed  Google Scholar 

  5. Baker, D., Sohl, J.L. & Agard, D.A. A protein-folding reaction under kinetic control.Nature 356, 263–265 (1992).

    Article  CAS  Google Scholar 

  6. Hua, Q.-X. et al. Structure of a protein in a kinetic trap. Nature Struct. Biol. 2, 129–137 (1995).

    Article  CAS  Google Scholar 

  7. King, J., Haase-Pettingell, C., Robinson, A.S., Speed, M. & Mitraki, A. Thermolabile folding intermediates: Inclusion body precursors and chaperonin substrates. FASEB J. 10, 57–66 (1996).

    Article  CAS  Google Scholar 

  8. Carrell, R.W., Evans, D. LI. & Stein, P.E. Mobile reactive center of serpins and the control of thrombosis. Nature 353, 576–578 (1991).

    Article  CAS  Google Scholar 

  9. Mottonen, J. et al. Structural basis of latency in plasminogen activator inhibitor-1. Nature 355, 270–273 (1992).

    Article  CAS  Google Scholar 

  10. Schulze, A.J., Huber, R., Bode, W. & Engh, R.A. Structural aspects of serpin inhibition. FEBS Lett. 344, 117–124 (1994).

    Article  CAS  Google Scholar 

  11. Pan, K.-M. et al. Conversion of α-helices into (β-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA 90, 10962–10966 (1993).

    Article  CAS  Google Scholar 

  12. Riek, R. et al. NMR structure of the mouse prion protein domain PrP(121-231). Nature 382, 180–182 (1996).

    Article  CAS  Google Scholar 

  13. Baker, D. & Agard, D.A. Kinetics versus thermodynamics in protein folding. Biochemistry 33, 7505–7509 (1994).

    Article  CAS  Google Scholar 

  14. Karplus, M. & Sali, A. Theories of protein folding. Curr. Opin. Struct. Biol. 5, 58–73 (1995).

    Article  CAS  Google Scholar 

  15. Dobson, C.M. Finding the right fold. Nature Struct. Biol. 2, 513–517 (1995).

    Article  CAS  Google Scholar 

  16. Dill, K.A. et al. Principles of protein folding—a perspective from simple exact models. Prot. Sci. 4, 561–602 (1995).

    Article  CAS  Google Scholar 

  17. Bryngelson, J.D., Onuchic, J.N., Socci, N.D. & Wolynes, P.G., Funnels, pathways, and the energy landscape of protein folding. Proteins 21, 167–195 (1995).

    Article  CAS  Google Scholar 

  18. Honeycutt, J.D. & Thirumalai, D. The nature of folded states of globular proteins. Biopolymers 32, 695–709 (1992).

    Article  CAS  Google Scholar 

  19. Alonso, D.O.W. & Daggett, V. Molecular dynamics simulations of protein unfolding and limited refolding: Characterization of partially unfolded states of ubiquitin in 60% methanol and water. J. Mol. Biol. 247, 501–520 (1995).

    Article  CAS  Google Scholar 

  20. Dinner, A.R., Sali, A. & Karplus, M. The folding mechanism of larger model proteins: Role of native structure. Proc. Natl. Acad. Sci. USA 93, 8356–8361 (1996).

    Article  CAS  Google Scholar 

  21. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

    Article  CAS  Google Scholar 

  22. Baldwin, R.L. On-pathway versus off-pathway folding intermediates. Folding & Design 1, R1–R8 (1996).

    Article  CAS  Google Scholar 

  23. Chan, H.S. & Dill, K.A. The effects of internal constraints on the configurations of chain molecules. J. Chem. Phys. 92, 3118–3135 (1990).

    Article  CAS  Google Scholar 

  24. Abkevich, V.I., Gutin, A.M. & Shakhnovich, E.I. Specific nucleus as the transition state for protein folding: Evidence from the lattice model. Biochemistry 33, 10026–10036 (1994).

    Article  CAS  Google Scholar 

  25. Madras, N. & Sokal, A.D. The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk. J. Stat Phys. 50, 109–186 (1988).

    Article  Google Scholar 

  26. Kauzmann, W. Some factors in the interpretation of protein denaturation. Adv. Prot. Chem. 14, 1–63 (1959).

    CAS  Google Scholar 

  27. Kumar, S., Bouzida, D., Swendsen, R.H., Kollman, P.A. & Rosenberg, J.M. The weighted histogram analysis method for free-energy calculations on biomolecules I. The method. J. Comp. Chem. 13, 1011–1021 (1992).

    Article  CAS  Google Scholar 

  28. Boczko, E.M. & Brooks, C.L. III . Constant-temperature free energy surfaces for physical and chemical processes. J. Phys. Chem. 97, 4509–4513 (1993).

    Article  CAS  Google Scholar 

  29. Fiebig, K.M. & Dill, K.A. Protein core assembly processes. J. Chem. Phys. 98, 3475–3487 (1993).

    Article  CAS  Google Scholar 

  30. Dill, K.A., Fiebig, K.M. & Chan, H.S. Cooperativity in protein-folding kinetics. Proc. Natl. Acad. Sci. USA 90, 1942–1946 (1993).

    Article  CAS  Google Scholar 

  31. S˘ali, A., Shakhnovich, E. & Karplus, M. Kinetics of protein folding: A lattice model study of the requirements for folding to the native state. J. Mol. Biol. 235, 1614–1636 (1994).

    Article  Google Scholar 

  32. S˘ali, A., Shakhnovich, E. & Karplus, M. How does a protein fold? Nature 369, 248–251 (1994).

    Article  Google Scholar 

  33. Govindarajan, S. & Goldstein, R.A. Searching for foldable protein structures using optimized energy functions. Biopolymers 36, 43–51 (1995).

    Article  CAS  Google Scholar 

  34. Govindarajan, S. & Goldstein, R.A. Optimal local propensities for model proteins. Proteins 22, 413–418 (1995).

    Article  CAS  Google Scholar 

  35. Abkevich, V.I., Gutin, A.M. & Shakhnovich, E.I. Impact of local and non-local interactions on thermodynamics and kinetics of protein folding. J. Mol. Biol. 252, 460–471 (1995).

    Article  CAS  Google Scholar 

  36. Bullough, P.A., Hughson, F.M., Skehel, J.J. & Wiley, D.C. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371, 37–43 (1994).

    Article  CAS  Google Scholar 

  37. Zhang, S. & Rich, A. A Direct conversion of an oligopeptide from a β-sheet to an α-helix: A model for amyloid formation. Proc. Natl. Acad. Sci. USA 94, 23–28 (1997).

    Article  CAS  Google Scholar 

  38. Booth, D.R. et al. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385, 787–793 (1997).

    Article  CAS  Google Scholar 

  39. Perutz, M. Mutations make enzyme polymerize. Nature 385, 773–775 (1997).

    Article  CAS  Google Scholar 

  40. Cohen, F.E. et al. Structural clues to prion replication. Science 264, 530–531 (1994).

    Article  CAS  Google Scholar 

  41. Nelson, M. et al. MDScope—A visual computing environment for structural biology. Comput. Phys. Commun. 91, 111–134 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Karplus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinner, A., Karplus, M. A metastable state in folding simulations of a protein model. Nat Struct Mol Biol 5, 236–241 (1998). https://doi.org/10.1038/nsb0398-236

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0398-236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing