Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A potent new mode of β-lactamase inhibition revealed by the 1.7 Å X-ray crystallographic structure of the TEM-1–BLIP complex

Abstract

The structure of TEM-1 β-lactamase complexed with the inhibitor BLIP has been determined at 1.7 Å resolution. The two tandemly repeated domains of BLIP form a polar, concave surface that docks onto a predominantly polar, convex protrusion on the enzyme. The ability of BLIP to adapt to a variety of class A β-lactamases is most likely due to an observed flexibility between the two domains of the inhibitor and to an extensive layer of water molecules entrapped between the enzyme and inhibitor. A β-hairpin loop from domain 1 of BLIP is inserted into the active site of the β-lactamase. The carboxylate of Asp 49 forms hydrogen bonds to four conserved, catalytic residues in the β-lactamase, thereby mimicking the position of the penicillin G carboxylate observed in the acyl–enzyme complex of TEM-1 with substrate. This β-hairpin may serve as a template with which to create a new family of peptide-analogue β-lactamase inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Knowles, J.R. RTEM β-Lactamase. Acct. Chem. Res. 18, 97–104 (1985).

    Article  CAS  Google Scholar 

  2. Christensen, H., Martin, M.T. & Waley, S.G. β-lactamases as fully efficient enzymes. Determination of all the rate constants in the acyl-enzyme mechanism. Biochem J. 266, 853–861 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Neu, H.C. The crisis in antibiotic resistance. Science 257, 1064–1073 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Reading, C. & Cole, M. Clavulanic acid: a β-lactamase-inhibiting β-lactam from Streptomyces clavuligerus. Antibmicrob. Agents Chemother. 11, 852–857 (1977).

    Article  CAS  Google Scholar 

  5. Blazquez, J., Baquero, M.F., Canton, R., Alos, R. & Bagnew, F. Characterization of a new TEM-type β-lactamase resistant to clavulanate, sulbactam, and tazobactam in a clinical isolate of Escherichia coli. Antimicrob. Agents Chemother. 37, 2059–2063 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Strynadka, N.C.J. et al. Molecular structure of the acyl-enzyjne intermediate in β-lactam hydrolysis at 1.7 Å resolution. Nature 359, 700–705 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Strynadka, N.C.J. et al. Structural and kinetic characterization of a β-lactamase-inhibitor protein. Nature 368, 657–660 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Adachi, H., Ohta, T. & Martsuzana, H. Site-directed mutants, at position 166, of RTEM-1 β-lactamase that form a stable acyl-enzyme intermediate with penicillin. J. Biol. Chem. 266, 3186–3191 (1991).

    CAS  PubMed  Google Scholar 

  9. Escobar, W.A., Tan, A.K. & Fink, A.L. Site-directed mutagenesis of β-lactamase leading to accumulation of a catalytic intermediate. Biochemistry 30, 10783–10787 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Bode, W. & Huber, R. Proteinase-protein inhibitor interaction. Biochem. Biophys. Acta 50, 437–446, (1991).

    CAS  Google Scholar 

  12. Janin, J. Elusive affinities. Proteins 21, 30–39 (1995)

    Article  CAS  PubMed  Google Scholar 

  13. Kim, J.C., Nikolov, D.B. & Burley, S. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 365, 520–527 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Kim, Y., Geiger, J.H., Hahn, S. & Sigler, P.B. Crystal structure of a TBP/TATA-box complex. Nature 365, 512–520 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Endrizzi, J.A., Cronk, J.D., Wang, W., Crabtree, J.R. & Alber, T. Crystal structure of DCoH, a bifunctional protein-binding transcriptional coactivator. Science 268, 556–558 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Collaborative Computational Project, Number 4. The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr. D50, 760–763 (1991).

  17. Janin, J. & Chothia, C. The structure of protein-protein recognition sites. J. Biol. Chem. 265, 16027–16030 (1990).

    CAS  PubMed  Google Scholar 

  18. De Vos, A.M., Ultsch, M. & Kossiakoff, A.A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255, 306–312 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Kobe, B. & Diesenhofer, H. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374, 183–186 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Ambler, R.P. et al. A standard numbering scheme for the class A β-lactamases. Biochem. J. 276, 269–272 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guillet, V., Lapthorn, A., Hartley, R.W. & Maugeuen, Y. Three-dimensional structure of a barnase-3-GMP complex at 2.2 Å resolution. Structure 3, 165–176 (1993).

    Article  Google Scholar 

  22. Buckle, A.M., Schreiber, G. & Fersht, A.R. Protein-protein recognition: crystal structure analysis of a barstar-barnase complex at 2.0 Å resolution. Biochemistry 33, 8878–8889 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. McGrath, M.E., Erpel, T., Bystroff, C. & Fletterick, R.J. Macromolecular chelation as an improved mechanism of protease inhibition:structure of the ecotin-trypsin complex. EMBO J 13, 1502–1507 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Herzberg, O.J. Refined crystal structure of the β-lactamase from Staphylococcus aureus PC1. J. Mol. Biol. 217, 701–719 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Leatherbarrow, R.J. & Salacinski, H.J. Design of a small peptide-based proteinase inhibitor by modelling the active site region of barley chymotrypsin inhibitor 2. Biochemistry 30, 10717–10721 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Viera, J. & Messing, J. Production of single-stranded plasmid DNA. Meth. Enzym. 153, 3–11 (1987).

    Article  Google Scholar 

  27. Doran, J.C., Leskiw, B.K., Aippersbach, S. & Jensen, S.E. Isolation and characterization of a β-lactamase inhibitory protein from Streptomyces clavuligerus and cloning and analysis of the corresponding gene. J. Bact. 172, 4904–4918 (1990).

    Google Scholar 

  28. Leslie, A.G.W., Brick, P. & Wonnacott, A.J. MOSFILM. CCP4 Newsletter 18, 33–39 (1986).

    Google Scholar 

  29. Navaza, J. On the fast rotation function. Acta Crystallogr. A43, 645–660 (1993).

    Google Scholar 

  30. Brünger, A.T. X-PLOR Manual version 3.1 (Yale University, New Haven, CT, 1987).

    Google Scholar 

  31. Otwinowski, Z. et al. Crystal structure of trp represser/operator complex at atomic resolution. Nature 335, 321–329 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. Tronrud, D.E. Conjugate-direction minimization: an improved method for the refinement of macromolecules. Acta Crystallogr. A48, 912–916 (1992).

    Article  CAS  Google Scholar 

  33. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein molecules in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  34. Bernstein, F.C. et al. The Protein Data Bank: A computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535–592.

    Article  CAS  PubMed  Google Scholar 

  35. Kraulis, P.J. Molscript: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strynadka, N., Jensen, S., Alzari, P. et al. A potent new mode of β-lactamase inhibition revealed by the 1.7 Å X-ray crystallographic structure of the TEM-1–BLIP complex. Nat Struct Mol Biol 3, 290–297 (1996). https://doi.org/10.1038/nsb0396-290

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0396-290

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing