Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Insight
  • Published:

Mapping the lipid-exposed surfaces of membrane proteins

Abstract

Phospholamban forms a stable complex of five long transmembrane helices. We show that the relative rotational orientation of the helices in the pentameric complex can be distinguished by S–H to S–D exchange of cysteine sulphydryl groups located in the transmembrane segment of the protein and exposed to the lipid environment. Of the three cysteine residues in phospholamban, two residues (Cys 36 and Cys 46) are oriented towards the helix interface and protected from exchange, while the third cysteine (Cys 41) is oriented towards the lipid interface and undergoes exchange with water diffused into the bilayer. Distinguishing the external and internal faces of a membrane protein by sulphydryl exchange provides a general approach for determining the three-dimensional fold of membrane proteins and enhances model building efforts to generate high-resolution structures.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Engelman, D.M., Steitz, T.A. & Goldman, A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Anna. Rev. Biophys. Biophys. Chem. 15, 321–353 (1986).

    Article  CAS  Google Scholar 

  2. Arkin, I.T. et al. Structural model of the phospholamban ion channel complex in phospholipid membranes. J. Mol. Biol. 248, 824–834 (1995).

    Article  CAS  Google Scholar 

  3. Arkin, I.T. et al. Structural organization of the pentameric transmembrane α-helices of phospholamban, a cardiac ion channel. EMBO. J. 13, 4757–4764 (1994).

    Article  CAS  Google Scholar 

  4. Englander, S.W. & Englander, J.J. Structure and energy change in hemoglobin by hydrogen exchange labeling. Methods Enzymol. 232, 26 (1994).

    Article  CAS  Google Scholar 

  5. Braiman, M.S. & Rothschild, K.J. Fourier transform infrared techniques for probing membrane protein structure. Annu. Rev. Biophys. Chem. 17, 541–570 (1988).

    Article  CAS  Google Scholar 

  6. Tadesse, L., Nazarbaghi, R. & Walters, L. Isotopically enhanced infrared spectroscopy: a novel method for examining secondary structure at specific sites in conformationally heterogeneous peptides. J. Am. Chem. Soc. 113, 7036–7037 (1991).

    Article  CAS  Google Scholar 

  7. Huimin, L. & Thomas Jr., G.J., Cysteine conformation and sulfhydryl interactions in proteins and viruses. 1. Correlation of the Raman S–H band with hydrogen bonding and intramolecular geometry in model compounds. J. Am. Chem. Soc. 113, 456–462 (1991).

    Article  Google Scholar 

  8. Deamer, D.W. & Bramhall, J. Permeability of lipid bilayers to water and ionic solutes. J. Chem. Phys. Lipids 40, 167–188 (1986).

    Article  CAS  Google Scholar 

  9. Smith, S.O., Hamilton, J., Salmon, A. & Bormann, B.J. Rotational resonance NMR determination of intra- and intermolecular distance constraints in dipalmitoylphosphatidylcholine bilayers. Biochemistry 33, 6327–6333 (1994).

    Article  CAS  Google Scholar 

  10. Smith, S.O., Jonas, R., Braiman, M.S. & Bormann, B.J. Structure and orientation of the transmembrane domain of glycophorin A in lipid bilayers. Biochemistry 33, 6334–6341 (1994).

    Article  CAS  Google Scholar 

  11. Smith, S.O. & Bormann, B.J. Determination of helix-helix interactions in membranes by rotational resonance NMR. Proc. Natl. Acad. Sci. USA 92, 488–491 (1995).

    Article  CAS  Google Scholar 

  12. Treutlein, H.R., Lemmon, M.A., Engelman, D.M. & Brünger, A.T. The glycophorin A transmembrane domain dimer: sequence specific propensity for a right-handed supercoil of helices. Biochemistry 31, 12726–12732 (1992).

    Article  CAS  Google Scholar 

  13. Lemmon, M.A., Flanagan, J.M., Treutlein, H.R., Zhang, J. & Engelman, D.M. Sequence specificity in the dimerization of transmembrane α-helices. Biochemistry 31, 12719–12725 (1992).

    Article  CAS  Google Scholar 

  14. Lemmon, M.A. et al. Glycophorin A dimerization is driven by specific interactions between transmembrane α-helices. J. Biol. Chem. 267, 7683–7689 (1992).

    CAS  Google Scholar 

  15. Fujii, J., Maruyama, K., Tada, M. & MacLennan, D.H. Expression and site-specific mutagenesis of phospholamban. J. Biol. Chem. 264, 12950–12955 (1989).

    CAS  PubMed  Google Scholar 

  16. Adams, P.D., Arkin, I.T., Engelman, D.M. & Brünger, A.T. Computational searching and mutagenesis suggest a structure for phospholamban, a cardiac ion channel. Nature Struct. Biol. 2, 154–162 (1995).

    Article  CAS  Google Scholar 

  17. Wu, J. & Kaback, H.R. Cysteine 148 in the lactose permease of Escherichia coli is a component of a substrate binding site. 2. Site-directed fluorescence studies. Biochemistry 33, 12166–12171 (1994).

    Article  CAS  Google Scholar 

  18. Resek, J.F., Farahbakhsh, Z.T., Hubbell, W.L. & Khorana, H.G. Formation of the meta II photointermediate is accompanied by conformational changes in the cytoplasmic surface of rhodopsin. Biochemistry 32, 12025–12032 (1993).

    Article  CAS  Google Scholar 

  19. Alexiev, U., Marti, T., Heyn, M.P., Khorana, H.G. & Scherrer, P. Covalently bound pH-indicator dyes at selected extracellular or cytoplasmic sites in bacteriorhodopsin. 2. Rotational orientation of helices D and E and kinetic correlation between M formation and proton release in bacteriorhodopsin micelles. Biochemistry 33, 13693–13699 (1994).

    Article  CAS  Google Scholar 

  20. Nicholls, A. & Honig, B. A rapid finite difference algorithm, utilizing successive over relaxation to solve the Poisson–Boltzmann equation. J. Comput. Chem. 12, 435 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arkin, I., MacKenzie, K., Fisher, L. et al. Mapping the lipid-exposed surfaces of membrane proteins. Nat Struct Mol Biol 3, 240–243 (1996). https://doi.org/10.1038/nsb0396-240

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0396-240

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing