Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Binding of two distamycin A molecules in the minor groove of an alternating B–DNA duplex

Abstract

Here we report the 1.8Å X–ray structure of a 2:1 drug–DNA complex between distamycin A and an alternating B–DNA octamer duplex d(ICICICIC)2. The two distamycin A molecules are bound side by side with dyad symmetry in an antiparallel orientation in the expanded minor groove. The amides of each drug molecule are hydrogen bonded to the minor groove base atoms of only one DNA strand. The complex not only shows binding of two drug molecules, but the DNA duplex also exhibits striking low–high alternations in the helical twist angles, the sugar puckering and the phosphate conformations, providing the basis for a new model for an alternating B–DNA with a dinucleotide repeat.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Wang, A.H.-J. & Teng, M. Crystallographic and Modeling Methods in Molecular Design. (ed. Bugg, C.E. & Ealick, S.E.) 123–150 (Springer-Verlag, New York, 1990).

    Book  Google Scholar 

  2. Mitsuya, H. and Broder, S. Strategies for antiviral therapy in AIDS. Nature 325, 773–778 (1987).

    Article  CAS  Google Scholar 

  3. Portugal, J. & Waring, M.J. Comparison of binding sites in DNA for berenil netropsin and distamycin. A footprint study. Eur. J. Biochem. 167, 281–289 (1987).

    Article  CAS  Google Scholar 

  4. Pelton, J.G. & Wemmer, D.E. Structural modeling of the distamycin A-d(CGCGAATTCGCG)2 complex using 2D NMR and molecular mechanics. Biochemistry 27, 8088–8096 (1988).

    Article  CAS  Google Scholar 

  5. Patel, D.J. & Shapiro, L. Molecular recognition in noncovalent antitumur agent-DNA complexes: NMR studies of the base and sequence dependent recognition of the DNA minor groove by netropsin. Biochimie 67, 887 (1985).

    Article  CAS  Google Scholar 

  6. Coll, M., Frederick, C.A., Wang, A.H.-J. & Rich, A. A bifurcated hydrogen-bonded conformation in the d(A·T) base pair of the DNA dodecamer d(CGCAAATTTGCG) and its complex with distamycin. Proc. natn. Acad. Sci. U.S.A. 84, 8385–8389 (1987).

    Article  CAS  Google Scholar 

  7. Kopka, M.L., Yoon, C., Goodsell, D., Pjura, P. and Dickerson, R.E., The Binding of an antitumur drug to DNA. Netropsin and CGCGAATTBrCGCG. J. molec. Biol. 183, 553–563 (1985).

    Article  CAS  Google Scholar 

  8. Coll, M., Aymami, J., van der Marel, G.A., van Boom, J.H., Rick, A. & Wang, A.H.-J. Molecular structure of the netropsin-d(CGCGATATCGCG) complex: DNA conformation in an alternating AT segment. Biochemistry 28, 310–320 (1989).

    Article  CAS  Google Scholar 

  9. Sriram, M., van der Marel, G.A., Roelen, H.L.R.F., van Boom, J.H. & Wang, A.H.-J. Structural consequences of a carcinogenic alkylation lesion on DNA: effect of O6-ethylguanine on the molecular structure of the d(CGC[e6G]AATTCGCG)-netropsin complex. Biochemistry 31, 11823–11834 (1992).

    Article  CAS  Google Scholar 

  10. Tabernero, L., Verdaguer, N., Coll, M., Fita, I., van der Marel, G.A., van Boom, J.H., Rich, A. & Aymami, J. Molecular structure of the A-tract DNA dodecamer d(CGCAAATTTGCG) complexed with the minor groove binding drug netropsin. Biochemistry 32, 8403–8410 (1993).

    Article  CAS  Google Scholar 

  11. Balendiran, K., Rao, S.T., Sekharudu, C.Y., Zon, G. and Sundaralingam, M. X-ray structure of the dodecamer d(CGCGTTAACGCG) and its netropsin complex. Helical parameters from three methods vary. Biochemistry (in the press).

  12. Kopka, M.L. & Larsen, T.A. Netropsin and the lexitropsins. The search for sequence-specific minor groove-binding ligands in Nucleic Acid Targeted Drug Design (ed. Propst, C.L., & Perun, T.J.) 303–374 (Marcel Dekker, New York, 1992).

    Google Scholar 

  13. Pelton, J.G. & Wemmer, D.E. Structural characterization of a 2:1 distamycin A-d(CGCAAATTGGC) complex by two dimensional NMR. Proc. natn. Acad. Sci. U.S.A. 86, 5723–5727 (1989).

    Article  CAS  Google Scholar 

  14. Pelton, J.G. & Wemmer, D.E. Binding modes of distamycin A with d(CGCAAATTTGCG)2 determined by two-dimensional NMR. J. Am. Chem. Soc. 112, 1393–1399 (1990).

    Article  CAS  Google Scholar 

  15. Mrksich, M., Wade, W.S., Dwyer, T.J., Geierstanger, B.H., Wemmer, D.E. & Dervan, P.B. Antiparallel side-by-side dimeric motif for sequence-specific recognition in the minor groove of DNA by the designed peptide 1-methylimidazole-2-carbonamide netropsin. Proc. natn. Acad. Sci. U.S.A. 89, 7586–7590 (1992).

    Article  CAS  Google Scholar 

  16. Wade, W.S., Mrksich, M. & Dervan, P.B. Design of pepetides that bind in the minor groove of DNA at 5′-(A,T)G(A,T)C(A,T)-3′ sequences by a dimeric side-by-side motif. J. Am. Chem. Soc. 114, 8783–8794 (1992).

    Article  CAS  Google Scholar 

  17. Leslie, A.G.W, Arnott, S., Chandrasekaran, R. & Ratliff, R.L. Polymorphism of DNA double helices. J. molec. Biol. 143, 49–72 (1980).

    Article  CAS  Google Scholar 

  18. Prive, G.G., Heinemann, U., Chandrasegaran, S., Kan, L.-S., Kopka, M.L. & Dickerson, R.E. Helix geometry, hydration, and G·A mismatch in a B-DNA decamer. Science 238, 498–504 (1987).

    Article  CAS  Google Scholar 

  19. Cruse, W.B.T., Salisbury, S.A., Brown, T., Cosstick, R., Eckstein, F. & Kennard, O. Chiral phosphorothioate analogues of B-DNA. The crystal structure of Rp-d(Gp(S)CpGp(S)CpGp(S)C). J. molec. Biol. 192, 891–905 (1986).

    Article  CAS  Google Scholar 

  20. Yoon, C, Prive, G.G., Goodsell, D.S. & Dickerson, R.E. Structure of an alternating-B DNA helix and its relationship to A-truct DNA. Proc. natn. Acad. Sci. U.S.A. 85, 6332–6336 (1988).

    Article  CAS  Google Scholar 

  21. Altona, C. and Sundaralingam, M. Conformational analysis of the sugar ring in nucleotides and nulcleosides. A new description using the concept of pseudorotation. J. Am. Chem. Soc. 94, 8205–8211 (1972).

    Article  CAS  Google Scholar 

  22. Fratini, A.V., Kopka, M.L., Drew, H.R. & Dickerson, R.E. Reversible bending and helix geometry in a B-DNA dodecamer: CGCGAATTBrCGCG. J. biol. Chem. 257, 14686–14707 (1982).

    CAS  PubMed  Google Scholar 

  23. Bingman, C., Li, X., Zon, G. & Sundaralingam, M. Crystal and molecular structure of d(GTGCGCAC): investigation of the effects of base sequence on the conformation of octamer duplexes. Biochemistry 31, 12803–12812 (1992).

    Article  CAS  Google Scholar 

  24. Bingman, C, Jain, S., Zon, G. & Sundaralingam, M. Crystal and molecular structure of the alternating dodecamer d(GCGTACGTACGC) in the A-DNA form: comparison with the isomorphous non-alternating dodecamer d(CCGTACGTACGG). Nucleic Acids Res. 20, 6637–6647 (1992).

    Article  CAS  Google Scholar 

  25. Thota, N., Li, X., Bingman, C. & Sundaralingam, M. High resolution refinement of the hexagonal A-DNA octamer d(GTGTACAC) at 1.4Å. J. Acta Crystallogr. D49, 282–291 (1993).

    CAS  Google Scholar 

  26. Mitsui, Y. et al. Physical and Enzymatic studies on polyd(l-C)·poly d(l-C), an unusual double-helical DNA. Nature 288, 1166–1169 (1970).

    Article  Google Scholar 

  27. Ramakrishnan, B. and Sundaralingam, M. High resolution crystal structure of the A-DNA decamer d(CCCGGCCGGG). Novel intermolecular base-paired G*(G·C) triplets. J. molec. Biol. 231, 431–444 (1993).

    Article  CAS  Google Scholar 

  28. Takusagawa, F. The crystal structure of d(GTACGTAC) at 2.25Å resolution: Are the A-DNA's always unwounded approximately 10° at the C-G steps? J. Biomol. struc. dynamics 7, 795–809 (1990).

    Article  CAS  Google Scholar 

  29. Prive, G.G., Yanagi, K. & Dickerson, R.E. Structure of the B-DNA decamer CCAACGTTGG and comparison with isomorphous decamers CCAAGATTGG and CCAGGCCTGG. J molec. Biol. 217, 177–199 (1991).

    Article  CAS  Google Scholar 

  30. Lutter, L.C. Deoxyribonuclease I produces staggered cuts in the DNA of chromatin. J. molec. Biol. 117, 53–69 (1977).

    Article  CAS  Google Scholar 

  31. Laskowski, M. Sr, Deoxyribonuclease I in The Enzymes Vol. IV, 3rd edit. (ed. Boyer, P.O.), 289–311 (Academic Press, London, 1971)

    Google Scholar 

  32. Scheffler, I.E., Elson, E.L. & Baldwin, R.L. Helix formation by dAT oligomers, I. Hairpin and straight-chain helices. J. moec. Biol. 36, 291–304 (1968).

    Article  CAS  Google Scholar 

  33. Klug, A., Jack, A., Viswamitra, M.A., Kennard, O., Shakked, Z. & Steitz, T.A. A hypothesis on a specific sequence-dependent conformation of DNA and its relation to the binding of the lac-repressor protein. J. molec Biol. 131, 669–680 (1979).

    Article  CAS  Google Scholar 

  34. Jones, T.A. Interactive computer graphics: FRODO in Methods Enz. 115, 157–171 (1985).

  35. Brunger, A.T. XPLOR Manual, Version 3.0 (Yale University, New Haven, 1992).

    Google Scholar 

  36. Bernstein, F.C. et al. The protein data bank: a computer-based archieval file for macromolecule structures. J. molec. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  37. Sundaralingam, M. Stereochemistry of nucleic acids and their constituents. IV. Allowed and preferred conformations of nucleosides, nucleoside mono-, di, tri-, tetraphosphates, nucleic acids and polynucleotides. Biopolymers 7, 821–860 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, X., Ramakrishnan, B., Rao, S. et al. Binding of two distamycin A molecules in the minor groove of an alternating B–DNA duplex. Nat Struct Mol Biol 1, 169–175 (1994). https://doi.org/10.1038/nsb0394-169

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0394-169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing