Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Scanning mutagenesis of the Arc represser as a functional probe of operator recognition


Protein–DNA and protein–protein interactions are central to most biological regulation, and yet our understanding of these macromolecular recognition events is still incomplete. Both types of interactions are critical for the function of the Arc repressor. The functional importance of residues in or near its operator DNA–binding surface and dimer–dimer interaction surface has been probed by alanine–scanning mutagenesis. Mutations in three categories cause large binding defects: β–sheet side chains that directly interact with DNA bases; side chains that link different DNA–binding regions of Arc, and side chains required to maintain the active DNA–binding conformation.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Susskind, M. & Youderian, P. in Lambda II (eds Hendrix, R.W., Roberts, J.W., Stahl, F.W. & Weisberg, R.A.) 347–364 (Cold Spring Harbor Laboratory, 1983).

    Google Scholar 

  2. Knight, K.L., Bowie, J.U., Vershon, A.K., Kelley, R.D. & Sauer, R.T. The Arc and Mnt repressors. A new class of sequence-specific DNA-binding proteins. J. biol. Chem. 264, 3639–3642 (1989).

    Google Scholar 

  3. Breg, J.N., Opheusden, J.H.J., Burgering, M.J.M., Boelens, R. & Kaptein, R. Structure of Arc repressor in solution: evidence for a family of β-sheet DNA-binding proteins. Nature 346, 586–589 (1990).

    Article  CAS  Google Scholar 

  4. Raumann, B.E., Rould, M.A., Pabo, C.O. & Sauer, R.T. DNA recognition by β-sheets in the Arc repressor-operator crystal structure. Nature (in the press).

  5. Brown, B.M. & Sauer, R.T. Assembly of the Arc tetramer-operator complex: cooperative interactions between DNA-bound dimers. Biochemistry 32, 1354–1363 (1993).

    Article  CAS  Google Scholar 

  6. Vershon, A.K., Liao, S.M., McClure, W.R. & Sauer, R.T. Interaction of the bacteriophage P22 Arc repressor with operator DNA. J. molec. Biol. 195, 323–331 (1987).

    Article  CAS  Google Scholar 

  7. Brown, B.M., Bowie, J.U. & Sauer, R.T. Arc represser is tetrameric when bound to operator DNA. Biochemistry 29, 11189–11195 (1990).

    Article  CAS  Google Scholar 

  8. Bowie, J.U. & Sauer, R.T. Equilibrium dissociation and unfolding of the Arc represser dimer. Biochemistry 28, 7139–7143 (1989).

    Article  CAS  Google Scholar 

  9. Dixon, W.J. et al. in Methods in Enzymology (ed. Sauer, R.T.) 380–413(Academic, New York, 1991).

    Google Scholar 

  10. Sigman, D.S., Kuwabara, M.D., Chem, C.B. & Brucie, T.W. in Methods in Enzymology (ed. Sauer, R.T.) 414–433 (Academic, New York, 1991).

    Google Scholar 

  11. Flinta, C., Persson, B., Jornvall, H. & von Heijne, G. Sequence determinants of cytosolic N-terminal protein processing. Eur. J. Biochem. 154, 193–196 (1986).

    Article  CAS  Google Scholar 

  12. Hirel, P.H., Schmitter, J.M., Dessen, P., Fayat, G. & Blanquet, S. Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc. natn. Acad. Sci. U.S.A. 86, 8247–8251 (1989).

    Article  CAS  Google Scholar 

  13. de Vos, A.M., Ultsch, M., & Kossiakoff, A.A. Human growth hormone and extracellular do1main of its receptor: crystal structure of the complex. Science 255, 306–312 (1992).

    Article  CAS  Google Scholar 

  14. Cunningham, B.C. and Wells, J.A. High-resolution epitope mapping of HFG-receptor interactions by alanine-scanning mutagenesis. Science 244, 1081–1085 (1989).

    Article  CAS  Google Scholar 

  15. Bass, S.H., Mulkerrin, M.G. and Wells, J.A. A systematic mutational analysis of hormone-binding determinants in the human growth human receptor.Proc. natn. Acad. Sci. U.S.A. 88, 4498–4502 (1991).

    Article  CAS  Google Scholar 

  16. Cunningham, B.C., Ultsch, M., de Vos, A. M., Mulkerrin, M.G., Clauser, K.R. and Wells, J.A. Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone receptor. Science 254, 821–825 (1991).

    Article  CAS  Google Scholar 

  17. Pabo, C.O. and Sauer, R.T. Transcription factors: structural families and principles of DNA recognition. A .Rev. Biochem. 61, 053–1095 (1992).

    Article  Google Scholar 

  18. Milla, M.E., Brown, B.M. & Sauer, R.T. P22 Arc repressor: enhanced expression of unstable mutants by addition of polar C-terminal sequences.Protein Science 2, 2198–2205 (1993).

    Article  CAS  Google Scholar 

  19. Youderian, P., Bouvier, S. & Susskind, M.M. Sequence determinants of promotor activity. Cell 30, 843–853 (1982).

    Article  CAS  Google Scholar 

  20. Knight, K.L. & Sauer, R.T. DNA binding specificity of the Arc and Mnt repressors is determined by a short region of N-terminal residues. Proc. natn. Acad. Sci. U.S.A. 86, 797–801 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brown, B., Milla, M., Smith, T. et al. Scanning mutagenesis of the Arc represser as a functional probe of operator recognition. Nat Struct Mol Biol 1, 164–168 (1994).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing