Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the I1 early intermediate of photoactive yellow protein by FTIR spectroscopy

Abstract

To understand how proteins translate the energy of sunlight into defined conformational changes, we have measured the photocycle reactions of photoactive yellow protein (PYP) using time-resolved step scan Fourier transform infrared (FTIR) spectroscopy. Global fit analysis yielded the same apparent time constants for the reactions of the chromophore, the protonation changes of protein side chains and the protein backbone motions, indicating that the light cycle reactions are synchronized. Changes in absorbance indicate that there are at least four intermediates (I1, I1′, I2, I2′). In the intermediate I1, the dark-state hydrogen bond from Glu 46 to the aromatic ring of the p-hydroxycinnamoyl chromophore is preserved, implying that the chromophore undergoes trans to cis isomerization by flipping, not the aromatic ring, but the thioester linkage with the protein. This excludes an I1 structural model proposed on the basis of time resolved Laue crystallography, but does agree with the cryotrapped structure of an I1 precursor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall view of the PYP ground state structure.
Figure 2: Three-dimensional representation of the fitted infrared absorbance changes of PYP.
Figure 3: I1 − P FTIR difference spectrum and FT Raman spectrum of P.
Figure 4: I2 − P and I2 / I1′ − P FTIR difference spectra.
Figure 5: Infrared kinetics at specific wavenumbers.
Figure 6: Stereo view of PYP's active site.

Similar content being viewed by others

References

  1. Meyer, T.E. Isolation and characterization of soluble cytochromes, ferredoxins and other chromophoric proteins from the halophilic phototrophic bacterium. Ectothiorhodospira halophila. Biochim. Biophys. Acta 806, 175–183 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Kort, R. et al. The xanthopsins; a new family of eubacterial blue-light photoreceptors. EMBO J. 15, 3209–3218 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jiang, Z.Y. et al. Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochromes. Science 285, 406–409 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Sprenger, W.W., Hoff, W.D., Armitage, J.P. & Hellingwerf, K.J. The eubacterium Ectothiorhodospira halophila is negatively phototactic, with a wavelength dependence that fits the absorption spectrum of the photoactive yellow protein. J. Bacteriol. 175, 3096–3104 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meyer, T.E., Yakali, E., Cusanovich, M.A. & Tollin, G. Properties of a water-soluble, yellow protein isolated from a halophilic phototrophic bacterium that has photochemical activity analogous to sensory rhodopsin. Biochemistry 26, 418–423 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Baca, M. et al. Complete chemical structure of photoactive yellow protein: novel thioester-linked 4-hydroxycinnamyl chromophore and photocycle chemistry. Biochemistry 33, 14369–14377 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Hoff, W.D. et al. Thiol ester-linked p-coumaric acid as a new photoactive prosthetic group in a protein with rhodopsin-like photochemistry. Biochemistry 33, 13959–13962 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Meyer, T.E., Tollin, G., Hazzard, J.H. & Cusanovich, M.A. Photoactive yellow protein from the purple phototrophic bacterium, Ectothiorhodospira halophila. Quantum yield of photobleaching and effects of temperature, alcohols, glycerol, and sucrose on kinetics of photobleaching and recovery. Biophys. J. 56, 559–564 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hoff, W.D. et al. Measurement and global analysis of the absorbance changes in the photocycle of the photoactive yellow protein from Ectothiorhodospira halophila. Biophys. J. 67, 1691–1705 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Imamoto, Y., Kataoka, M. & Tokunaga, F. Photoreaction cycle of photoactive yellow protein from Ectothiorhodospira halophila studied by low-temperature spectroscopy. Biochemistry 35, 14047–14053 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Ujj, L. et al. New photocycle intermediates in the photoactive yellow protein from Ectothiorhodospira halophila; picosecond transient absorption spectroscopy. Biophys. J. 75, 406–412 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McRee, D.E., Meyer, T.E., Cusanovich, M.A., Parge, H.E. & Getzoff, E.D. Crystallographic characterization of a photoactive yellow protein with photochemistry similar to sensory rhodopsin. J. Biol. Chem. 261, 13850–13851 (1986).

    CAS  PubMed  Google Scholar 

  13. Borgstahl, G.E.O., Williams, D.R. & Getzoff, E.D. 1.4 Å structure of photoactive yellow protein, a cytosolic photoreceptor: unusual fold, active site, and chromophore. Biochemistry 34, 6278–6287 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Düx, P. et al. Solution structure and backbone dynamics of the photoactive yellow protein. Biochemistry 37, 12689–12699 (1998).

    Article  PubMed  Google Scholar 

  15. Perman, B. et al. Energy transduction on the nanosecond time scale: early structural events in a xanthopsin photocycle. Science 279, 1946–1950 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Genick, U.K., Soltis, S.M., Kuhn, P., Canestrelli, I.L. & Getzoff, E.D. Structure at 0.85 Å resolution of an early protein photocycle intermediate. Nature 392, 206–209 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Genick, U.K. et al. Structure of a photocycle intermediate by millisecond time-resolved crystallography. Science 275, 1471–1475 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. van Brederode, M.E., Hoff, W.D., van Stokkum, I.H.M., Groot, M.L. & Hellingwerf, K.J. Protein folding thermodynamics applied to the photocycle of the photoactive yellow protein. Biophys. J. 71, 365–380 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rubinstenn, G. et al. Structural and dynamic changes of photoactive yellow protein during its photocycle in solution. Nature Struct. Biol. 5, 568–570 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Hoff, W.D. et al. Global conformational changes upon receptor stimulation in photoactive yellow protein. Biochemistry 38, 1009–1017 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Gerwert, K. Molecular reaction mechanisms of proteins as monitored by time-resolved FTIR spectroscopy. Current Opin. Struct. Biol. 3, 769–773 (1993).

    Article  CAS  Google Scholar 

  22. Siebert, F. Infrared spectroscopy applied to biochemical and biological problems. Methods Enzymol. 246, 501–526 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Mathies, R.A. Biomolecular vibrational spectroscopy. Methods Enzymol. 246, 377–389 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Gerwert, K., Hess, B., Soppa, J. & Oesterhelt, D. Role of aspartate-96 in proton translocation by bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 86, 4943–4947 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xie, A., Hoff, W.D., Kroon, A.R. & Hellingwerf, K.J. Glu 46 donates a proton to the 4-hydroxycinnamate anion chromophore during the photocycle of photoactive yellow protein. Biochemistry 35, 14671–14678 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Hoff, W.D., Kwa, S.L.S., van Grondelle, R. & Hellingwerf, K.J. Low temperature absorbance and fluorescence spectroscopy of the photoactive yellow protein from Ectothiorhodospira halophila. Photochem. Photobiol. 56, 529–539 (1992).

    Article  CAS  Google Scholar 

  27. Unno, M., Kumauchi, M., Sasaki, J., Tokunaga, F. & Yamauchi, S. Evidence for a protonated and cis configuration chromophore in the photobleached intermediate of photoactive yellow protein. J. Am. Chem. Soc. 122, 4233–4234 (2000).

    Article  CAS  Google Scholar 

  28. Foerstendorf, H., Mummert, E., Schafer, E., Scheer, H. & Siebert, F. Fourier-transform infrared spectroscopy of phytochrome: difference spectra of the intermediates of the photoreactions. Biochemistry 35, 10793–10799 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Imamoto, Y. et al. Evidence for proton transfer from Glu-46 to the chromophore during the photocycle of photoactive yellow protein. J. Biol. Chem. 272, 12905–12908 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Zundel, G. Proton polarizability and proton transfer processes in hydrogen bonds and cation polarizabilities of other cation bonds; their importance to understand molecular processes in electrochemistry and biology. Trends Phys. Chem. 3, 129–156 (1992).

    CAS  Google Scholar 

  31. Devanathan, S. et al. Femtosecond spectroscopic observations of initial intermediates in the photocycle of the photoactive yellow protein from Ectothiorhodospira halophila. Biophys. J. 77, 1017–1023 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Srajer, V. et al. Photolysis of the carbon monoxide complex of myoglobin; nanosecond time-resolved crystallography. Science 274, 1726–1729 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Chu, K. et al. Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin. Nature 403, 921–923 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Genick, U.K. et al. Active site mutants implicate key residues for control of color and light cycle kinetics of photoactive yellow protein. Biochemistry 36, 8–14 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Brudler, R. et al. Coupling of hydrogen bonding to chromophore conformation and function in photoactive yellow protein. Biochemistry 39, 13478–13486 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Rammelsberg, R., Hessling, B., Chorongiewski, H. & Gerwert, K. Molecular reaction mechanisms of proteins monitored by nanosecond step-scan FT-IR difference spectroscopy. Appl. Spectrosc. 51, 558–562 (1997).

    Article  CAS  Google Scholar 

  37. Hessling, B., Souvignier, G. & Gerwert, K. A model-independent approach to assigning bacteriorhodopsin's intramolecular reactions to photocycle intermediates. Biophys. J. 65, 1929–1941 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH to E.D.G. and the DFG to K.G. R.B. gratefully acknowledges a fellowship from the DFG.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronald Brudler or Klaus Gerwert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brudler, R., Rammelsberg, R., Woo, T. et al. Structure of the I1 early intermediate of photoactive yellow protein by FTIR spectroscopy. Nat Struct Mol Biol 8, 265–270 (2001). https://doi.org/10.1038/85021

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85021

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing